The Assessment and Treatment of Dredged Sediments and Limestone Tuff Using Waste Ceramic with Low-Cement

Article Preview

Abstract:

Dredged sediments are a valuable natural resource used in construction and public works, however some dredged sediments do not have the physical and chemical qualities necessary for reuse, necessitating the addition of complementary materials such as ceramic waste powder. The main objective of this study is to improve the technical quality of sediments by adding ceramic waste powder and cement in low content by strengthening its mechanical and geotechnical properties. The present paper reports the treatment and recovery of dredged sediments with varying percentages of ceramic powder (Cp) and cement. Various properties such as maximum dry density, optimum moisture content, and California Bearing Ratio (CBR) are analyzed, the obtained results are compared with limestone Tuff. Investigations are performed using percentages of ceramic powder (Cp) at 2.5%, 5%, 7.5%, 10% and cement 5%. The results showed that there was an appreciable increase in strength and CBR values by the addition of Cp and cement. The research proved the effectiveness of the proposed method for constructing roads and pavements with low thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-58

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] World Commission on Dam, Dams and development. A New Framework for Decision-Making, Earth scan Publications Ltd, London, 2000, p.356.

Google Scholar

[2] Z. Labiod-alloui, H. Trouzine H.M.S. Ghembaza, T. Nouioua, Y. Sebaibi, Experimental investigation of mixtures of bentonite and dredged sediments from Chorfa dam in Algeria, Turk. J. Earth Sci. 23 (2014) 330-338.

DOI: 10.3906/yer-1302-13

Google Scholar

[3] A. Semcha, Valorisation des sédiments de dragage : Applications dans le BTP, cas du barrage de Fergoug. Thèse 175 p. Université de Reims Champagne-Ardenne, France, (2006).

DOI: 10.5150/cmcm.2015.032

Google Scholar

[4] A. Gupta, V.K. Arora, S. Biswas, Contaminated dredged soil stabilization using cement and bottom ash for use as highway subgrade fill, Int. J. Geo-Eng. 8 (2017). https://doi.org/10.1186/s40703-017-0057-8.

DOI: 10.1186/s40703-017-0057-8

Google Scholar

[5] Y. Abadou, R. Mitiche-Kettab, A. Ghrieb, Ceramic waste influence on dune sand mortar performance, Constr Build Mater. 125 (2016) 703–713.

DOI: 10.1016/j.conbuildmat.2016.08.083

Google Scholar

[6] Y. Shen, J. Yin, D. Zhu, D. Kumah, W. Guo, A. Hudu, Performance of a deep foundation pit supported by suspended piles in soil and rock strata: a case study, Arab. J. Geosci. 14 ( 2021) 22-11.

DOI: 10.1007/s12517-021-08606-x

Google Scholar

[7] A.J. Choobbasti, M.A. Samakoosh, S.S. Kutanaei, Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers, Constr Build Mater. 211 ( 2019) 1094-1104.

DOI: 10.1016/j.conbuildmat.2019.03.306

Google Scholar

[8] H. Rasouli, B. Fatahi, Liquefaction and post-liquefaction resistance of sand reinforced with recycled geofibre, Geotext. Geomembr. 50 (2022) 69-81.

DOI: 10.1016/j.geotexmem.2021.09.002

Google Scholar

[9] S. Akbulut, S. Arasan, E. Kalkan, Modification of clayey soils using scrap tire rubber and synthetic fibres, Appl. Clay Sci. 38( 2007) 23–32.

DOI: 10.1016/j.clay.2007.02.001

Google Scholar

[10] B. Balegh, H. Sellaf, A. Mostefa, Effect of ceramic waste on mechanical and geotechnical properties of tuff treated by cement, Case Stud. Constr. Mater. 13 (2020) e00368.

DOI: 10.1016/j.cscm.2020.e00368

Google Scholar

[11] M.M. Tsai, W. Qiao, J.K.H. Tsoi, A.D. Bona, J.P. Matinlinna, Effect of cigarette smoking on the bond strength between resin cement and dental CAD/CAM ceramics, J. Adhes. Sci. Technol. 3 (2017) )2323-2334.

DOI: 10.1080/01694243.2017.1299973

Google Scholar

[12] J. DeBresser, J. Urai, D. Olgaard, Effect of water on the strength and microstructure of Carrara marble axially compressed at high temperature, J. Struct. Geol. 27 (2005) 265-281.

DOI: 10.1016/j.jsg.2004.10.002

Google Scholar

[13] Z. Sun, H. Cui, H. An, D. Tao, Y. Xu, J. Zhai, Synthesis and thermal behavior of geopolymer-type material from waste ceramic, Constr Build Mater. 49(2013) 281-287.

DOI: 10.1016/j.conbuildmat.2013.08.063

Google Scholar

[14] V. Fonti, A. Dell'Anno, F. Beolchini, Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment, Water Res. 47 (2013) 5139-5152.

DOI: 10.1016/j.watres.2013.05.052

Google Scholar

[15] A.F. Al-Baidhani, A.J. Al-Taie, Recycled Crushed Ceramic Rubble for Improving Highly Expansive Soil, Transp. Infrastruct. Geotechnol. 7 (2020) 426–444.

DOI: 10.1007/s40515-020-00120-z

Google Scholar

[16] I. Abidi, L. Benamara, A. Alberto, S. Correia, M.I.M. Pinto, P.P. Cunha, Characterization of dredged sediments of Bouhanifia dam: potential use as a raw material, Arab. J. Geosci. 14 (2021) 2631.

DOI: 10.1007/s12517-021-08742-4

Google Scholar

[17] A.F. Cabalar, D.I. Hassan, M.D. Abdulnafaa, Use of waste ceramic tiles for road pavement subgrade, Road Mater. Pavement Des. 18 ( 2017) 882-896.

DOI: 10.1080/14680629.2016.1194884

Google Scholar

[18] R.K. Sharma, Utilization of Fly Ash and Waste Ceramic in Improving Characteristics of Clayey Soil: A Laboratory Stud Journal, Geotech. Geol. Eng. 38 ( 2020) 5327–5340.

DOI: 10.1007/s10706-020-01366-7

Google Scholar

[19] NF P 94-054, Sols: reconnaissances et essais, Détermination de la masse volumique des particules solides des sols, Méthode du pycnomètre à eau. Association Française de Normalisation, France. (in French).

DOI: 10.1007/978-3-662-39449-6_39

Google Scholar

[20] NF P 94-051, Sols: Reconnaissance et Essais – Détermination des limites d'Atterberg – Limite de liquidité à la coupelle – limite de plasticité au rouleau. Association Française de Normalisation, France. (in French).

Google Scholar

[21] NF P 94-057, Sols: reconnaissances et essais, Analyse granulométrique des sols, Méthode par sédimentation. Association Française de Normalisation, France. (in French).

Google Scholar

[22] NF P 94-068, Sols : Reconnaissance et essais, Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux, Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache. Association Française de Normalisation, France. (in French).

DOI: 10.1051/geotech/2007120083

Google Scholar

[23] NF P 94-056, Sols: reconnaissances et essais, Analyse granulométrique, Méthode de tamisage à sec après lavage. Association Française de Normalisation, France. (in French).

Google Scholar

[24] NF EN 1744, Essais visant à déterminer les propriétés chimiques des granulats. Association Française de Normalisation, France. (in French).

Google Scholar

[25] A. Casagrande, Research on the Atterberg limits of soils. Public Roads, 13 (1932), 121–136.

Google Scholar

[26] F.G. Bell, Engineering treatment of soils, E & FN Spon, Chapman and Hall, Boundary Row, London, UK, (1993)302.

Google Scholar

[27] C.O. Okagbue, T.U.S. Onyeobi, Potential of marble dust to stabilize red tropical soils for road construction, Eng. Geol. 53 (1999) 371-380.

DOI: 10.1016/s0013-7952(99)00036-8

Google Scholar

[28] P.V. Sivapullaiah, A. Sridharan, R.K.V. Bhaskar, Role of amount and type of clay in the lime stabilization of soils, Ground Improvement, 4 (2000)37–45.

DOI: 10.1680/grim.2000.4.1.37

Google Scholar

[29] R.M. Schmitz, C. Schreoder, R. Charlier, Chemo-mechanical interactions in clay a correlation between clay mineralogy and Atterberg limits, Appl. Clay Sci. 26 (2004)351–358.

DOI: 10.1016/j.clay.2003.12.015

Google Scholar

[30] H. Cetin, M. Fener, O. Gunaydin, Geotechnical properties of tire-cohesive clayey soil mixtures as fill material, Eng. Geol. 88 ( 2006)110-120.

DOI: 10.1016/j.enggeo.2006.09.002

Google Scholar

[31] R.K. Sharma, Utilization of Fly Ash and Waste Ceramic in Improving Characteristics of Clayey Soil: A Laboratory Study, Geotech. Geol. Eng. 38 (2020) 5327–5340.

DOI: 10.1007/s10706-020-01366-7

Google Scholar

[32] S. Deboucha, S.M. Aissa Mamoune, Y.S.H. Ziani, Effects of Ceramic Waste, Marble Dust, and Cement in Pavement Sub-base Layer, Geotech. Geol. Eng. 38 (2020) 3331–3340.

DOI: 10.1007/s10706-020-01211-x

Google Scholar

[33] A.F. Cabalar, D. I. Hassan, M. D. Abdulnafaa, Use of waste ceramic tiles for road pavement subgrade, Road Mater. Pavement Des. 18(4) (2017) 882–896.

DOI: 10.1080/14680629.2016.1194884

Google Scholar

[34] NF P 94-093, Sols: Sols: reconnaissance et essai - Détermination des caractéristiques de compactage d'un sol: essai Proctor normal, essai Proctor modifié. Association Française de Normalisation, France. (in French).

DOI: 10.1007/bf02481707

Google Scholar

[35] R.V .Silva, J .de Brito, CQ. Lye, The role of glass waste in the production of ceramic-based products and other applications: A review, J. Clean. Prod. 167 ( 2017) 346–364.

DOI: 10.1016/j.jclepro.2017.08.185

Google Scholar

[36] J.A. Chen, F.O. Idusuyi, Effect of waste ceramic dust (WCD) on index and engineering properties of shrink-swell soils, Int . J. Eng. Mod. Technol. 1(8) (2015) 52–62.

Google Scholar

[37] A.K. Sabat, Stabilization of Expansive Soil Using Waste Ceramic Dust, J. Geotech. Eng. 39(2012) 3915-3926.

Google Scholar

[38] NF P 94-078. Soils: investigation and tests. CBR after immersion. Immediate CBR. Immediate bearing ratio. Measurement on sample compacted in CBR mould, May 1997. (in French).

DOI: 10.1520/d1883-14

Google Scholar

[39] O. RagabIbrahim, W. Alshehhi, H. Alhindasi, A. Alkalbani, F. Almahrezi, A.M. Masria, Correlation between CBR Values and Index Properties of Soils: A Case Study of Oman, Key Eng. Mater. 913( 2022) 205-214.

DOI: 10.4028/p-a5inw4

Google Scholar

[40] A.O. Adeboje, W.K. Kupolati, E.R. Sadiku, J.M. Ndambuki, A.O. Owolabi, C. Kambole, Stabilisation of lateritic soil with pulverised ceramic waste for road construction, Int. J. Environ. Eng. 10(3) (2020) 221-242.

DOI: 10.1504/ijee.2020.10029579

Google Scholar

[41] W .Wang, W .Chen, H .Liu, Recycling of waste red mud for production of ceramic floor tile with high strength and lightweight, J. Alloys Compd. 748 ( 2018)876–881.

DOI: 10.1016/j.jallcom.2018.03.220

Google Scholar

[42] T.C. Cardoso, P. Ricardo de Matos , L. Py, M .Longhi, O.Cascudo, A.P. Kirchheim, Ternary cements produced with non-calcined clay, limestone, and Portland clinker, J. Build. Eng. 45 ( 2022) 103437.

DOI: 10.1016/j.jobe.2021.103437

Google Scholar