[1]
F. Cucchiella, I. D'Adamo, and M. Gastaldi, Sustainable waste management: Waste to energy plant as an alternative to landfill,, Energy Convers. Manag., vol. 131, p.18–31, 2017,.
DOI: 10.1016/j.enconman.2016.11.012
Google Scholar
[2]
H. Shi, N. Mahinpey, A. Aqsha, and R. Silbermann, Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste,, Waste Manag., vol. 48, p.34–47, 2016,.
DOI: 10.1016/j.wasman.2015.09.036
Google Scholar
[3]
C. Sheng and J. L. T. Azevedo, Estimating the higher heating value of biomass fuels from basic analysis data,, Biomass and Bioenergy, vol. 28, no. 5, p.499–507, 2005,.
DOI: 10.1016/j.biombioe.2004.11.008
Google Scholar
[4]
C.-Y. Yin, Prediction of higher heating values of biomass from proximate and ultimate analyses Chun-Yang,, Fuel, vol. 90, no. 3, p.1128–1132, 2011,.
DOI: 10.1016/j.fuel.2010.11.031
Google Scholar
[5]
D. R. Nhuchhen and P. Abdul Salam, Estimation of higher heating value of biomass from proximate analysis: A new approach,, Fuel, vol. 99, p.55–63, 2012,.
DOI: 10.1016/j.fuel.2012.04.015
Google Scholar
[6]
T. Cordero, F. Marquez, J. Rodriguez-Mirasol, and J. Rodriguez, Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis,, Fuel, vol. 80, no. 11, p.1567–1571, 2001,.
DOI: 10.1016/s0016-2361(01)00034-5
Google Scholar
[7]
A. K. Majumder, R. Jain, P. Banerjee, and J. P. Barnwal, Development of a new proximate analysis based correlation to predict calorific value of coal,, Fuel, vol. 87, no. 13–14, p.3077–3081, 2008,.
DOI: 10.1016/j.fuel.2008.04.008
Google Scholar
[8]
A. ÖzyuǧUran and S. Yaman, Prediction of Calorific Value of Biomass from Proximate Analysis,, Energy Procedia, vol. 107, no. September 2016, p.130–136, 2017,.
DOI: 10.1016/j.egypro.2016.12.149
Google Scholar
[9]
C. Huang, L. Han, X. Liu, and Z. Yang, Models predicting calorific value of straw from the ash content,, Int. J. Green Energy, vol. 5, no. 6, p.533–539, 2008,.
DOI: 10.1080/15435070802498507
Google Scholar
[10]
J. M. Vargas-Moreno, A. J. Callejón-Ferre, J. Pérez-Alonso, and B. Velázquez-Martí, A review of the mathematical models for predicting the heating value of biomass materials,, Renew. Sustain. Energy Rev., vol. 16, no. 5, p.3065–3083, 2012,.
DOI: 10.1016/j.rser.2012.02.054
Google Scholar
[11]
S. Küçükbayrak, B. Dürüs, A. E. Meríçboyu, and E. Kadiog̈lu, Estimation of calorific values of Turkish lignites,, Fuel, vol. 70, no. 8, p.979–981, 1991,.
DOI: 10.1016/0016-2361(91)90054-e
Google Scholar
[12]
A. Demirbas, Prediction of higher heating values for vegetable oils and animal fats from proximate analysis data,, Energy Sources, Part A Recover. Util. Environ. Eff., vol. 31, no. 14, p.1264–1270, 2009,.
DOI: 10.1080/15567030802089532
Google Scholar
[13]
J. Parikh, S. A. Channiwala, and G. K. Ghosal, A correlation for calculating HHV from proximate analysis of solid fuels,, Fuel, vol. 84, no. 5, p.487–494, 2005,.
DOI: 10.1016/j.fuel.2004.10.010
Google Scholar
[14]
D. R. Nhuchhen and M. T. Afzal, HHV predicting correlations for torrefied biomass using proximate and ultimate analyses,, Bioengineering, vol. 4, no. 1, 2017,.
DOI: 10.3390/bioengineering4010007
Google Scholar
[15]
S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels,, Fuel, vol. 81, no. 8, p.1051–1063, 2002,.
DOI: 10.1016/s0016-2361(01)00131-4
Google Scholar
[16]
C. Qian, Q. Li, Z. Zhang, X. Wang, J. Hu, and W. Cao, Prediction of higher heating values of biochar from proximate and ultimate analysis,, Fuel, vol. 265, no. December 2019, p.116925, 2020,.
DOI: 10.1016/j.fuel.2019.116925
Google Scholar
[17]
W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity,, Bulletin of Mathematical Biology, vol. 52, no. No. 1/2, p.99–115, (1990).
DOI: 10.1016/s0092-8240(05)80006-0
Google Scholar
[18]
A. Dashti, A. S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, and A. H. Mohammadi, Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation,, Fuel, vol. 257, no. July, p.115931, 2019,.
DOI: 10.1016/j.fuel.2019.115931
Google Scholar
[19]
V. N. Vapnik, An Overview of Statistical Learning Theory,, vol. 10, no. 5, p.988–999, (1999).
Google Scholar
[20]
V. N. Vapnik, Statistical Learning Theory 1998, Springer science & business media, , vol. 2, (1998).
Google Scholar
[21]
T.-N. Do and P. François, Classification de grands ensembles de données avec un nouvel algorithme de SVM.,, In EGC, pp.739-750, (2007).
Google Scholar
[22]
J. S. R. Jang, Input selection for ANFIS learning,, IEEE Int. Conf. Fuzzy Syst., vol. 2, p.1493–1499, 1996,.
Google Scholar
[23]
A. Dashti, M. Raji, A. Azarafza, A. Baghban, A. H. Mohammadi, and M. Asghari, Rigorous prognostication and modeling of gas adsorption on activated carbon and Zeolite-5A,, J. Environ. Manage., vol. 224, no. May, p.58–68, 2018,.
DOI: 10.1016/j.jenvman.2018.06.091
Google Scholar
[24]
I. Boumanchar et al., Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques,, Waste Manag. Res., vol. 37, no. 6, p.578–589, 2019,.
DOI: 10.1177/0734242x18816797
Google Scholar
[25]
R. Singh, R. K. Umrao, M. Ahmad, M. K. Ansari, L. K. Sharma, and T. N. Singh, Prediction of geomechanical parameters using soft computing and multiple regression approach,, Meas. J. Int. Meas. Confed., vol. 99, p.108–119, 2017,.
DOI: 10.1016/j.measurement.2016.12.023
Google Scholar
[26]
X. Qian, S. Lee, A. M. Soto, and G. Chen, Regression model to predict the higher heating value of poultry waste from proximate analysis,, Resources, vol. 7, no. 3, 2018,.
DOI: 10.3390/resources7030039
Google Scholar
[27]
B. M. Jenkins, L. L. Baxter, T. R. Miles, and T. R. Miles, Combustion properties of biomass,, Fuel Process. Technol., vol. 54, no. 1–3, p.17–46, 1998,.
DOI: 10.1016/s0378-3820(97)00059-3
Google Scholar
[28]
Q. Feng, J. Zhang, X. Zhang, and S. Wen, Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network,, Fuel Process. Technol., vol. 129, p.120–129, 2015,.
DOI: 10.1016/j.fuproc.2014.09.001
Google Scholar
[29]
B. Fortunato, G. Brunetti, S. M. Camporeale, M. Torresi, and F. Fornarelli, Thermodynamic model of a downdraft gasifier,, Energy Convers. Manag., vol. 140, p.281–294, 2017,.
DOI: 10.1016/j.enconman.2017.02.061
Google Scholar
[30]
E. S. Hasan, M. Jahiding, Mashuni, W. O. S. Ilmawati, W. Wati, and I. N. Sudiana, Proximate and the Calorific Value Analysis of Brown Coal for High-Calorie Hybrid Briquette Application,, J. Phys. Conf. Ser., vol. 846, no. 1, 2017,.
DOI: 10.1088/1742-6596/846/1/012022
Google Scholar
[31]
K. Nattapong, W. Pilada, and J. Anuwat, Charcoal Briquettes from Madan Wood Waste as an Alternative Energy in Thailand,, Procedia Manuf., vol. 30, p.128–135, 2019,.
DOI: 10.1016/j.promfg.2019.02.019
Google Scholar
[32]
A. Tamilvanan, Preparation of Biomass Briquettes using Various Agro- Residues and Waste Papers,, J. Biofuels, vol. 4, no. 2, p.47, 2013,.
DOI: 10.5958/j.0976-4763.4.2.006
Google Scholar