Modeling of Agricultural Waste Higher Heating Value Based on Proximate Analysis

Article Preview

Abstract:

A model of the higher heating value on a dry basis from the proximity analysis of agricultural wastes in Benin has been proposed in this article. This model was developed using agricultural residues such as shea shells and cakes, cotton and soybean stalks, corn cobs and peanut shells identified as part of the implementation of an experimental system. The validity of this model has been established for the Higher Heating Value (HHV) between 18.07 MJ/kg to 25.91 MJ/kg, Volatile Matter rate (%VM) 66.8% to 79.87%, Fixed Carbon rate 13.83% to 29.59%, and Ash content (%Ash) 3.47% to 6.3%. The model has an average absolute error of 2.79% and a bias error of 0.034%, significantly better than the most accurate literature prediction model, which offers a mean absolute error of 5.97% and –4.66% for the bias error. This work presents as well the first data from the proximity analysis of agricultural residues in Benin. These analyzes are carried out using a well-structured methodology that respects the standards and measures of simple random sampling forsample collection. Samples prepared under appropriate conditions are analyzed using standardized protocols for the agricultural wastes studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-106

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Cucchiella, I. D'Adamo, and M. Gastaldi, Sustainable waste management: Waste to energy plant as an alternative to landfill,, Energy Convers. Manag., vol. 131, p.18–31, 2017,.

DOI: 10.1016/j.enconman.2016.11.012

Google Scholar

[2] H. Shi, N. Mahinpey, A. Aqsha, and R. Silbermann, Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste,, Waste Manag., vol. 48, p.34–47, 2016,.

DOI: 10.1016/j.wasman.2015.09.036

Google Scholar

[3] C. Sheng and J. L. T. Azevedo, Estimating the higher heating value of biomass fuels from basic analysis data,, Biomass and Bioenergy, vol. 28, no. 5, p.499–507, 2005,.

DOI: 10.1016/j.biombioe.2004.11.008

Google Scholar

[4] C.-Y. Yin, Prediction of higher heating values of biomass from proximate and ultimate analyses Chun-Yang,, Fuel, vol. 90, no. 3, p.1128–1132, 2011,.

DOI: 10.1016/j.fuel.2010.11.031

Google Scholar

[5] D. R. Nhuchhen and P. Abdul Salam, Estimation of higher heating value of biomass from proximate analysis: A new approach,, Fuel, vol. 99, p.55–63, 2012,.

DOI: 10.1016/j.fuel.2012.04.015

Google Scholar

[6] T. Cordero, F. Marquez, J. Rodriguez-Mirasol, and J. Rodriguez, Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis,, Fuel, vol. 80, no. 11, p.1567–1571, 2001,.

DOI: 10.1016/s0016-2361(01)00034-5

Google Scholar

[7] A. K. Majumder, R. Jain, P. Banerjee, and J. P. Barnwal, Development of a new proximate analysis based correlation to predict calorific value of coal,, Fuel, vol. 87, no. 13–14, p.3077–3081, 2008,.

DOI: 10.1016/j.fuel.2008.04.008

Google Scholar

[8] A. ÖzyuǧUran and S. Yaman, Prediction of Calorific Value of Biomass from Proximate Analysis,, Energy Procedia, vol. 107, no. September 2016, p.130–136, 2017,.

DOI: 10.1016/j.egypro.2016.12.149

Google Scholar

[9] C. Huang, L. Han, X. Liu, and Z. Yang, Models predicting calorific value of straw from the ash content,, Int. J. Green Energy, vol. 5, no. 6, p.533–539, 2008,.

DOI: 10.1080/15435070802498507

Google Scholar

[10] J. M. Vargas-Moreno, A. J. Callejón-Ferre, J. Pérez-Alonso, and B. Velázquez-Martí, A review of the mathematical models for predicting the heating value of biomass materials,, Renew. Sustain. Energy Rev., vol. 16, no. 5, p.3065–3083, 2012,.

DOI: 10.1016/j.rser.2012.02.054

Google Scholar

[11] S. Küçükbayrak, B. Dürüs, A. E. Meríçboyu, and E. Kadiog̈lu, Estimation of calorific values of Turkish lignites,, Fuel, vol. 70, no. 8, p.979–981, 1991,.

DOI: 10.1016/0016-2361(91)90054-e

Google Scholar

[12] A. Demirbas, Prediction of higher heating values for vegetable oils and animal fats from proximate analysis data,, Energy Sources, Part A Recover. Util. Environ. Eff., vol. 31, no. 14, p.1264–1270, 2009,.

DOI: 10.1080/15567030802089532

Google Scholar

[13] J. Parikh, S. A. Channiwala, and G. K. Ghosal, A correlation for calculating HHV from proximate analysis of solid fuels,, Fuel, vol. 84, no. 5, p.487–494, 2005,.

DOI: 10.1016/j.fuel.2004.10.010

Google Scholar

[14] D. R. Nhuchhen and M. T. Afzal, HHV predicting correlations for torrefied biomass using proximate and ultimate analyses,, Bioengineering, vol. 4, no. 1, 2017,.

DOI: 10.3390/bioengineering4010007

Google Scholar

[15] S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels,, Fuel, vol. 81, no. 8, p.1051–1063, 2002,.

DOI: 10.1016/s0016-2361(01)00131-4

Google Scholar

[16] C. Qian, Q. Li, Z. Zhang, X. Wang, J. Hu, and W. Cao, Prediction of higher heating values of biochar from proximate and ultimate analysis,, Fuel, vol. 265, no. December 2019, p.116925, 2020,.

DOI: 10.1016/j.fuel.2019.116925

Google Scholar

[17] W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity,, Bulletin of Mathematical Biology, vol. 52, no. No. 1/2, p.99–115, (1990).

DOI: 10.1016/s0092-8240(05)80006-0

Google Scholar

[18] A. Dashti, A. S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, and A. H. Mohammadi, Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation,, Fuel, vol. 257, no. July, p.115931, 2019,.

DOI: 10.1016/j.fuel.2019.115931

Google Scholar

[19] V. N. Vapnik, An Overview of Statistical Learning Theory,, vol. 10, no. 5, p.988–999, (1999).

Google Scholar

[20] V. N. Vapnik, Statistical Learning Theory 1998, Springer science & business media, , vol. 2, (1998).

Google Scholar

[21] T.-N. Do and P. François, Classification de grands ensembles de données avec un nouvel algorithme de SVM.,, In EGC, pp.739-750, (2007).

Google Scholar

[22] J. S. R. Jang, Input selection for ANFIS learning,, IEEE Int. Conf. Fuzzy Syst., vol. 2, p.1493–1499, 1996,.

Google Scholar

[23] A. Dashti, M. Raji, A. Azarafza, A. Baghban, A. H. Mohammadi, and M. Asghari, Rigorous prognostication and modeling of gas adsorption on activated carbon and Zeolite-5A,, J. Environ. Manage., vol. 224, no. May, p.58–68, 2018,.

DOI: 10.1016/j.jenvman.2018.06.091

Google Scholar

[24] I. Boumanchar et al., Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques,, Waste Manag. Res., vol. 37, no. 6, p.578–589, 2019,.

DOI: 10.1177/0734242x18816797

Google Scholar

[25] R. Singh, R. K. Umrao, M. Ahmad, M. K. Ansari, L. K. Sharma, and T. N. Singh, Prediction of geomechanical parameters using soft computing and multiple regression approach,, Meas. J. Int. Meas. Confed., vol. 99, p.108–119, 2017,.

DOI: 10.1016/j.measurement.2016.12.023

Google Scholar

[26] X. Qian, S. Lee, A. M. Soto, and G. Chen, Regression model to predict the higher heating value of poultry waste from proximate analysis,, Resources, vol. 7, no. 3, 2018,.

DOI: 10.3390/resources7030039

Google Scholar

[27] B. M. Jenkins, L. L. Baxter, T. R. Miles, and T. R. Miles, Combustion properties of biomass,, Fuel Process. Technol., vol. 54, no. 1–3, p.17–46, 1998,.

DOI: 10.1016/s0378-3820(97)00059-3

Google Scholar

[28] Q. Feng, J. Zhang, X. Zhang, and S. Wen, Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network,, Fuel Process. Technol., vol. 129, p.120–129, 2015,.

DOI: 10.1016/j.fuproc.2014.09.001

Google Scholar

[29] B. Fortunato, G. Brunetti, S. M. Camporeale, M. Torresi, and F. Fornarelli, Thermodynamic model of a downdraft gasifier,, Energy Convers. Manag., vol. 140, p.281–294, 2017,.

DOI: 10.1016/j.enconman.2017.02.061

Google Scholar

[30] E. S. Hasan, M. Jahiding, Mashuni, W. O. S. Ilmawati, W. Wati, and I. N. Sudiana, Proximate and the Calorific Value Analysis of Brown Coal for High-Calorie Hybrid Briquette Application,, J. Phys. Conf. Ser., vol. 846, no. 1, 2017,.

DOI: 10.1088/1742-6596/846/1/012022

Google Scholar

[31] K. Nattapong, W. Pilada, and J. Anuwat, Charcoal Briquettes from Madan Wood Waste as an Alternative Energy in Thailand,, Procedia Manuf., vol. 30, p.128–135, 2019,.

DOI: 10.1016/j.promfg.2019.02.019

Google Scholar

[32] A. Tamilvanan, Preparation of Biomass Briquettes using Various Agro- Residues and Waste Papers,, J. Biofuels, vol. 4, no. 2, p.47, 2013,.

DOI: 10.5958/j.0976-4763.4.2.006

Google Scholar