[1]
M. Hambali and S. Yakub, Artificial Neural Network Approach For Electric Load Forecasting In Power Distribution Company,, Nov. (2017).
Google Scholar
[2]
Clustering Time Related Data: A Regression Tree Approach., http://pubs.sciepub.com/ajams/10/1/4/index.html (accessed Aug. 21, 2022).
Google Scholar
[3]
Electrical Load Forecasting Using Fuzzy System." https://www.scirp.org/ (S(lz5mqp453edsnp55rrgjct55))/journal/paperinformation.aspx,paperid=94904 (accessed Aug. 21, 2022).
Google Scholar
[4]
A. Das and A. Sengupta, Forecasting Electrical Energy Consumption using Artificial Neural Networks,, Int. J. Eng. Res., vol. 8, no. 11, p.8.
Google Scholar
[5]
M. S. AL-Musaylh, R. C. Deo, J. F. Adamowski, and Y. Li, Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia,, Renew. Sustain. Energy Rev., vol. 113, p.109293, Oct. 2019,.
DOI: 10.1016/j.rser.2019.109293
Google Scholar
[6]
E. Vivas, H. Allende-Cid, and R. Salas, A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score,, Entropy, vol. 22, no. 12, p.1412, Dec. 2020,.
DOI: 10.3390/e22121412
Google Scholar
[7]
la division d'analyse des systèmes d'énergie de KTH en collaboration avec SNV, VOIES D'ELECTRIFICATION POUR LE BENIN: Une analyse spatiale d'électrification basée sur l'Outil d'électrification spatiale Open Source (OnSSET),, la Direction Générale des Ressources Energétiques du Bénin, BENIN, Dec. (2018).
DOI: 10.1051/larsg:2005029
Google Scholar
[8]
K. Gajowniczek, R. Nafkha, and T. Ząbkowski, Electricity peak demand classification with artificial neural networks,, Sep. 2017, p.307–315.
DOI: 10.15439/2017f168
Google Scholar
[9]
M. M. Dalvand, S. B. Z. Azami, and H. Tarimoradi, Long-term load forecasting of Iranian power grid using fuzzy and artificial neural networks,, in 2008 43rd International Universities Power Engineering Conference, Padova, Sep. 2008, p.1–4.
DOI: 10.1109/upec.2008.4651538
Google Scholar
[10]
Mr. EL MAKRINI Aboubakr, Amélioration De L'intégration De L'énergie Éolienne Au Réseau Électrique De Transport Marocain," Centre d'Etudes Doctorales : Sciences et Techniques de l'Ingénieur/MAROC, N° d,ordre : 13/2018, (2018).
Google Scholar
[11]
M. E. Günay, Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey,, Energy Policy, vol. 90, p.92–101, Mar. 2016,.
DOI: 10.1016/j.enpol.2015.12.019
Google Scholar
[12]
K. Panklib, C. Prakasvudhisarn, and D. Khummongkol, Electricity Consumption Forecasting in Thailand Using an Artificial Neural Network and Multiple Linear Regression,, Energy Sources Part B Econ. Plan. Policy, vol. 10, no. 4, p.427–434, Oct. 2015,.
DOI: 10.1080/15567249.2011.559520
Google Scholar
[13]
V. Gil-Vera, Pronóstico De La Demanda Mensual De Electricidad Con Series De Tiempo,, Rev. EIA, vol. 13, no. 26, p.111–120, Mar. 2017,.
DOI: 10.24050/reia.v13i26.749
Google Scholar
[14]
G. A. Adepoju, S. O. A. Ogunjuyigbe, K. O. Alawode, and B. Tech, Application of Neural Network to Load Forecasting in Nigerian Electrical Power System,, . Number, vol. 8, no. 1, p.6, (2007).
Google Scholar
[15]
A. Al-Shareef, E. Mohamed, and E. Al-Judaibi, Next 24-Hours Load Forecasting Using Artificial Neural Network (ANN) for the Western Area of Saudi Arabia,, J. King Abdulaziz Univ.-Eng. Sci., vol. 19, no. 2, p.25–40, 2008,.
DOI: 10.4197/eng.19-2.2
Google Scholar
[16]
F. Kaytez, A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption,, Energy, vol. 197, p.117200, Apr. 2020,.
DOI: 10.1016/j.energy.2020.117200
Google Scholar
[17]
A. J. del Real, F. Dorado, and J. Durán, Energy Demand Forecasting Using Deep Learning: Applications for the French Grid,, Energies, vol. 13, no. 9, Art. no. 9, Jan. 2020,.
DOI: 10.3390/en13092242
Google Scholar
[18]
R. Porteiro, L. Hernández-Callejo, and S. Nesmachnow, Electricity demand forecasting in industrial and residential facilities using ensemble machine learning,, Rev. Fac. Ing. Univ. Antioquia, (2020).
DOI: 10.17533/udea.redin.20200584
Google Scholar
[19]
J. Hao, X. Sun, and Q. Feng, A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm,, Energies, vol. 13, no. 3, Art. no. 3, Jan. 2020,.
DOI: 10.3390/en13030550
Google Scholar
[20]
B. Birecikli, Ö. A. Karaman, S. B. Çelebi, and A. Turgut, Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks,, J. Mech. Sci. Technol., vol. 34, no. 11, p.4631–4640, Nov. 2020,.
DOI: 10.1007/s12206-020-1021-7
Google Scholar
[21]
R. Houimli, M. Zmami, and O. Ben-Salha, Short-term electric load forecasting in Tunisia using artificial neural networks,, Energy Syst., vol. 11, no. 2, p.357–375, May 2020,.
DOI: 10.1007/s12667-019-00324-4
Google Scholar
[22]
M.-R. Kazemzadeh, A. Amjadian, and T. Amraee, A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting,, Energy, vol. 204, p.117948, Aug. 2020,.
DOI: 10.1016/j.energy.2020.117948
Google Scholar
[23]
M. C. Pegalajar, L. G. B. Ruiz, M. P. Cuéllar, and R. Rueda, Analysis and enhanced prediction of the Spanish Electricity Network through Big Data and Machine Learning techniques,, Int. J. Approx. Reason., vol. 133, p.48–59, Jun. 2021,.
DOI: 10.1016/j.ijar.2021.03.002
Google Scholar
[24]
P. Ramsami and R. King, Neural Network Frameworks for Electricity Forecasting in Mauritius and Rodrigues Islands,, Aug. 2021, p.1–5.
DOI: 10.1109/powerafrica52236.2021.9543176
Google Scholar
[25]
U. Şahin, S. Ballı, and Y. Chen, Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods,, Appl. Energy, vol. 302, p.117540, Nov. 2021,.
DOI: 10.1016/j.apenergy.2021.117540
Google Scholar
[26]
M. Saglam, C. Spataru, and O. A. Karaman, Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island,, Energies, vol. 15, no. 16, Art. no. 16, Jan. 2022,.
DOI: 10.3390/en15165950
Google Scholar
[27]
E. Cebekhulu, A. J. Onumanyi, and S. J. Isaac, Performance Analysis of Machine Learning Algorithms for Energy Demand–Supply Prediction in Smart Grids,, Sustainability, vol. 14, no. 5, Art. no. 5, Jan. 2022,.
DOI: 10.3390/su14052546
Google Scholar
[28]
M. Saglam, C. Spataru, and O. A. Karaman, Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island,, Energies, vol. 15, no. 16, Art. no. 16, Jan. 2022,.
DOI: 10.3390/en15165950
Google Scholar
[29]
C. Touzet, Les Reseaux De Neurones Artificiels, Introduction Au Connexionnisme,, p.130.
Google Scholar
[30]
P. Lu, L. Ye, Y. Zhao, B. Dai, M. Pei, and Y. Tang, Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges,, Appl. Energy, vol. 301, p.117446, Nov. 2021,.
DOI: 10.1016/j.apenergy.2021.117446
Google Scholar
[31]
eLtronics villa, Activation Function,, Medium, Jun. 03, 2019. https://medium.com/@eltronicsvilla17/activation-function-df184bbbbc63 (accessed Aug. 22, 2022).
Google Scholar
[32]
N. Ayoub, F. Musharavati, S. Pokharel, and H. A. Gabbar, ANN Model for Energy Demand and Supply Forecasting in a Hybrid Energy Supply System,, in 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Aug. 2018, p.25–30.
DOI: 10.1109/sege.2018.8499514
Google Scholar
[33]
A. Laouafi, M. Mordjaoui, F. Laouafi, and T. E. Boukelia, Daily peak electricity demand forecasting based on an adaptive hybrid two-stage methodology,, Int. J. Electr. Power Energy Syst., vol. 77, p.136–144, May 2016,.
DOI: 10.1016/j.ijepes.2015.11.046
Google Scholar
[34]
A. Das and A. Sengupta, Forecasting Electrical Energy Consumption using Artificial Neural Networks,, Int. J. Eng. Res., vol. 8, no. 11, p.8.
Google Scholar
[35]
C. Dangbedji, P. Ngae, and A. Vianou, Modélisation de la consommation mensuelle de l'energie electrique au Benin,, J. Rech. Sci. Univ. Lome, vol. 13, 2011,.
DOI: 10.4314/jrsul.v13i1.68056
Google Scholar
[36]
C. Adjamagbo, P. Ngae, and A. Vianou, Modélisation de la demande en énergie électrique au Togo,, p.17.
Google Scholar
[37]
Olivier SIDLER, CONNAISSANCE ET MAîTRISE DES USAGES SPECIFIQUES DE L'ELECTRICITE DANS LE SECTEUR RESIDENTIEL,, ENERTECH, Note technique n°090401, Apr. (2009).
Google Scholar
[38]
Inovation energie dévéloppement, Etude pour la mise en place d'un environnement propice à l'électrification hors-réseau,, MAC-BENIN, (2017).
Google Scholar
[39]
wether_effet_energy.2021022.pdf.,.
Google Scholar
[40]
Our World in Data,, Our World in Data. https://ourworldindata.org (accessed Apr. 08, 2022).
Google Scholar
[41]
JEMT_Volume 2_Issue 3_Pages 42-59.pdf.,.
Google Scholar
[42]
A. Karimu and J. T. Mensah, Climate change and electricity consumption in Sub-Saharan Africa: assessing the dynamic responses to climate variability: Responses to climate variability,, OPEC Energy Rev., vol. 39, no. 3, p.322–345, Sep. 2015,.
DOI: 10.1111/opec.12054
Google Scholar
[43]
(PDF) ARTIFICIAL NEURAL NETWORK APPROACH FOR ELECTRIC LOAD FORECASTING IN POWER DISTRIBUTION COMPANY." https://www.researchgate.net/publication/328430346_ARTIFICIAL_NEURAL_NETWORK_APPROACH_FOR_ELECTRIC_LOAD_FORECASTING_IN_POWER_DISTRIBUTION_COMPANY,enrichId=rgreq-08570b22b0c980861fea576bafd50b3b-XXX&enrichSource=Y292ZXJQYWdlOzMyODQzMDM0NjtBUzo2ODQ1NTkxNDIyMjc5NzBAMTU0MDIyMzAyNjMxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf (accessed Aug. 21, 2022).
DOI: 10.1080/07313569708955782
Google Scholar
[44]
W. Zhang, L. Zhang, J. Wang, and X. Niu, Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting,, Appl. Energy, vol. 277, p.115561, Nov. 2020,.
DOI: 10.1016/j.apenergy.2020.115561
Google Scholar
[45]
Mean Squared Error (MSE),, Statistics By Jim, Nov. 12, 2021. https://statisticsbyjim.com/ regression/mean-squared-error-mse/ (accessed Apr. 10, 2022).
DOI: 10.7551/mitpress/4931.003.0009
Google Scholar
[46]
L. Alkaiem, F. Keller, and H. Sternberg, Analysis of inclination measurement by means of artificial neural networks – A comparison of static and dynamic networks,, p.10.
Google Scholar