[1]
N. O. Parchin, H. J. Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, Reconfigurable antennas: Switching techniques— a survey,, Electronics (Switzerland), vol. 9, no. 2. MDPI AG, Feb. 01, 2020.
DOI: 10.3390/electronics9020336
Google Scholar
[2]
C. Arora, S. S. Pattnaik, and R. N. Baral, SRR Superstrate for Gain and Bandwidth Enhancement of Microstrip Patch Antenna Array,, Progress In Electromagnetics Research B, vol. 76, p.73–85, 2017.
DOI: 10.2528/pierb17041405
Google Scholar
[3]
N. Kaur, J. S. Sivia, and M. Kumar, Design of Nested Circular Ring-Shaped ultra-wideband Antenna Loaded with SRR and Defected Ground Plane,, Wireless Personal Communications, 2021,.
DOI: 10.1007/s11277-021-09272-8
Google Scholar
[4]
C. Arora, S. S. Pattnaik, and R. N. Baral, Dual band microstrip patch antenna array loaded with split ring resonators and via holes,, AEU - International Journal of Electronics and Communications, vol. 93, p.253–260, Sep. 2018,.
DOI: 10.1016/j.aeue.2018.06.016
Google Scholar
[5]
R. K. Verma and D. K. Srivastava, Bandwidth Improvement of Stub Loaded Compact ultra-wideband Microstrip Patch Antenna for C/X-Band Applications,, Wireless Personal Communications, vol. 120, no. 1, p.185–202, Sep. 2021,.
DOI: 10.1007/s11277-021-08441-z
Google Scholar
[6]
P. v. Anila, V. P. Sarin, M. Manoj, M. Remsha, and P. Mohanan, Broadband non-resonant split ring resonator-based artificial high dielectric substrate,, AEU - International Journal of Electronics and Communications, vol. 117, Apr. 2020,.
DOI: 10.1016/j.aeue.2020.153095
Google Scholar
[7]
A. Al-Ahmadi and Y. S. H. Khraisat, Bandwidth Enhancement of Microstrip Patch Antenna,, Applied Physics Research, vol. 11, no. 1, p.35, Jan. 2019,.
DOI: 10.5539/apr.v11n1p35
Google Scholar
[8]
Kim JH, Ahn C-H, and Chun J-C, Bandwidth enhancementof a slot antenna with an open stub,, Microwave and Optical Technology Letters, vol. 60, no. 1, p.248–252, Jan. 2017,.
DOI: 10.1002/mop.30951
Google Scholar
[9]
D. Tripathi, D. K. Srivastava, and R. K. Verma, Bandwidth Enhancement of Slotted Rectangular Wideband Microstrip Antenna for the Application of WLAN/WiMAX,, Wireless Personal Communications, vol. 119, no. 2, p.1193–1207, Jul. 2021,.
DOI: 10.1007/s11277-021-08257-x
Google Scholar
[10]
A. Yadav, V. K. Singh, and H. Mohan, Design of a U-shaped circularly polarized wearable antenna with DGS on a fabric substrate for WLAN and C-band applications,, Journal of Computational Electronics, vol. 18, no. 3, p.1103–1109, Sep. 2019,.
DOI: 10.1007/s10825-019-01342-2
Google Scholar
[11]
T. Saeidi, I. Ismail, W. P. Wen, A. R. H. Alhawari, and A. Mohammadi, ultra-wideband antennas for wireless communication applications,, International Journal of Antennas and Propagation, vol. 2019. Hindawi Limited, 2019.
DOI: 10.1155/2019/7918765
Google Scholar
[12]
T. Sabapathy, M. A. Bashah, M. Jusoh, P. J. Soh and M. R. Kamarudin, Frequency reconfigurable rectangular antenna with T-slotted feed line,, 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 2016, pp.81-84,.
DOI: 10.1109/icramet.2016.7849587
Google Scholar
[13]
Y. P. Selvam et al., A low-profile frequency- and pattern-reconfigurable antenna,, IEEE Antennas and Wireless Propagation Letters, vol. 16, p.3047–3050, Oct. 2017,.
DOI: 10.1109/lawp.2017.2759960
Google Scholar
[14]
F. Zadehparizi and S. Jam, An improved teaching-learning–based optimization for design of frequency reconfigurable antennas,, International Journal of Communication Systems, vol. 32, no. 12, Aug. 2019,.
DOI: 10.1002/dac.4030
Google Scholar
[15]
Y. P. Selvam et al., A low-profile frequency- and pattern-reconfigurable antenna,, IEEE Antennas and Wireless Propagation Letters, vol. 16, p.3047–3050, Oct. 2017,.
DOI: 10.1109/lawp.2017.2759960
Google Scholar
[16]
H. F. Abutarboush et al., A Reconfigurable Wideband and Multiband Antenna Using Dual-Patch Elements for Compact Wireless Devices,, in IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp.36-43, Jan. 2012,.
DOI: 10.1109/tap.2011.2167925
Google Scholar
[17]
Y. P. Selvam, L. Elumalai, M. G. N. Alsath, M. Kanagasabai, S. Subbaraj, and S. Kingsly, Novel Frequency- A nd Pattern-Reconfigurable Rhombic Patch Antenna with Switchable Polarization,, IEEE Antennas and Wireless Propagation Letters, vol. 16, p.1639–1642, 2017,.
DOI: 10.1109/lawp.2017.2660069
Google Scholar
[18]
Y. B. Chaouche, I. Messaoudene, I. Benmabrouk, M. Nedil, and F. Bouttout, A Compact CPW-Fed Reconfigurable Fractal Antenna for Switchable Multiband Systems,, Sep. 2019.
DOI: 10.1049/iet-map.2018.5005
Google Scholar
[19]
A. Ghaffar, X. J. Li, N. Hussain, and W. A. Awan, Flexible Frequency and Radiation Pattern Reconfigurable Antenna for Multi-band Applications,, 4th Australian Microwave Symposium (AMS), 2020.
DOI: 10.1109/ams48904.2020.9059296
Google Scholar
[20]
D. E. Anagnostou et al., Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna,, IEEE Transactions on Antennas and Propagation, vol. 54, no. 2, p.422–432, Feb. 2006,.
DOI: 10.1109/tap.2005.863399
Google Scholar
[21]
Nguyen-Trong., H. L. N, and Fumeaux C, A dual-band dual-pattern frequency-reconfigurable antenna,, Microwave and Optical Technology Letters, vol. 59, no. 11, p.2710–2715, Nov. 2017,.
DOI: 10.1002/mop.30815
Google Scholar
[22]
K. Dalal, T. Singh, & Pawan, and K. Singh, Multiband reconfigurable antennas for future wireless communication systems,, Indian Journal of Radio & Space Physics, vol. 49, p.79–97, (2020).
Google Scholar
[23]
A. A. Palsokar and S. L. Lahudkar, Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode,, AEU - International Journal of Electronics and Communications, vol. 125, Oct. 2020,.
DOI: 10.1016/j.aeue.2020.153370
Google Scholar
[24]
A. Boufrioua, Frequency Reconfigurable Antenna Designs Using PIN Diode for Wireless Communication Applications,, Wireless Personal Communications, vol. 110, no. 4, p.1879–1885, Feb. 2020,.
DOI: 10.1007/s11277-019-06816-x
Google Scholar
[25]
A. K. Saurabh, P. S. Rathore, and M. K. Meshram, Compact wideband four-element MIMO antenna with high isolation,, Electronics Letters, vol. 56, no. 3, p.117–119, Feb. 2020,.
DOI: 10.1049/el.2019.2871
Google Scholar
[26]
R. Mark, N. Mishra, K. Mandal, P. P. Sarkar, and S. Das, Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications,, AEU - International Journal of Electronics and Communications, vol. 94, p.42–50, Sep. 2018,.
DOI: 10.1016/j.aeue.2018.06.039
Google Scholar
[27]
S. Tripathi, A. Mohan, and S. Yadav, A compact frequency-reconfigurable fractal UWB antenna using reconfigurable ground plane,, Microwave and Optical Technology Letters, vol. 59, no. 8, p.1800–1808, Aug. 2017,.
DOI: 10.1002/mop.30631
Google Scholar
[28]
Y. K. Choukiker and S. K. Behera, Wideband Frequency Reconfigurable Koch Snowflake Fractal Antenna,, IET Microwaves, Antennas & Propagation , vol. 11, no. 2, p.203–208, Jan. 2017,.
DOI: 10.1049/iet-map.2016.0238
Google Scholar
[29]
Mansoul A and Seddiki ML., Multiband reconfigurable Bowtie slot antenna using switchable slot extensions for WiFi, WiMAX, and WLAN applications.,, Microwave and Optical Technology Letters, vol. 60, no. 2, p.413–418, Feb. 2018,.
DOI: 10.1002/mop.30981
Google Scholar
[30]
N. Kumar Sahu and A. Kumar Sharma, An Investigation of Pattern and Frequency Reconfigurable Microstrip Slot Antenna Using PIN Diodes,, 2017.
DOI: 10.1109/piers.2017.8261884
Google Scholar
[31]
Singh, C., Kumawat, G. A Compact Rectangular ultra-Wideband Microstrip Patch Antenna with Double Band Notch Feature at Wi-Max and WLAN. Wireless Pers Commun 114, 2063–2077 (2020). https://doi.org/10.1007/s11277-020-07465-1.
DOI: 10.1007/s11277-020-07465-1
Google Scholar
[32]
Li L, Nan J, Liu J, Tao C (2020). A compact UWB antenna with triple band notch reconfigurability. International Journal of Microwave and Wireless Technologies 1–7. https://doi.org/10.1017/ S1759078720001580.
DOI: 10.1017/s1759078720001580
Google Scholar
[33]
Devana, V.N.K.R., Satyanarayana, V., Lakshmi, A.V. et al. A novel compact fractal UWB antenna with dual band notched characteristics. Analog Integr Circ Sig Process 110, 349–360 (2022). https://doi.org/10.1007/s10470-021-01958-0.
DOI: 10.1007/s10470-021-01958-0
Google Scholar
[34]
Amir H. Nazeri, A. Falahati, R.M. Edwards, A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications, AEU - International Journal of Electronics and Communications, Volume 101, 2019, Pages 1-8, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2019.01.018.
DOI: 10.1016/j.aeue.2019.01.018
Google Scholar
[35]
Ali, T., Fatima, N., & Biradar, R. C. (2018). A miniaturized multiband reconfgurable fractal slot antenna for GPS / GNSS / Bluetooth / WiMAX / X-band applications. AEU-International Journal of Electronics and Communications, 94, 234–243.
DOI: 10.1016/j.aeue.2018.07.017
Google Scholar
[36]
Idris, I. H., Hamid, M. R., Kamardin, K., & Rahim, M. K. A. (2018). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering,28(4), 21216.
DOI: 10.1002/mmce.21216
Google Scholar
[37]
Liang Wang et al 2020 J. Phys.: Conf. Ser. 1550 042059.
Google Scholar
[38]
Karthika, K., Kavitha, K. Reconfigurable Antennas for Advanced Wireless Communications: A Review. Wireless Pers Commun 120, 2711–2771 (2021).
DOI: 10.1007/s11277-021-08555-4
Google Scholar
[39]
A.Yadav, S. Agrawal, R.P. Yadav, SRR and S-Shape Slot Loaded Triple Band Notched UWB Antenna, International Journal of Electronics and Communications (2017), doi:10.1016/ j.aeue.2017.06.003.
DOI: 10.1016/j.aeue.2017.06.003
Google Scholar
[40]
Partha Pratim Shome & Taimoor Khan (2020): Switchable triple band-notched UWB antenna modeling for interference rejection from dual WiMAX bands and satellite C-band service, Journal of Electromagnetic Waves and Applications,.
DOI: 10.1080/09205071.2020.1806115
Google Scholar