A Frequency Reconfigurable Fractal UWB Antenna Using Ground Stub and PIN

Article Preview

Abstract:

A hexagonal shaped repeated loop structure with reconfigurable ground stub technique is proposed for ultra-wideband (UWB) application. Effects of repeated loops in the fractal structure and position of reconfigurable ground stub are optimized for ultra-wideband characteristics with better performance of the antenna. Two PIN diodes are used in the ground stub to achieve reconfigurability. The proposed fractal antenna is designed with FR4 substrate with an overall dimension of 40×44×1.6 mm3. The design shows frequency reconfiguration from Ultra-wideband characteristics to multiband for different possible switching conditions. The entire design is carried out in CST 2018 environment and the simulated results show that the proposed design is suitable for sub 6GHz wireless LAN, Bluetooth, WiMAX and other wireless applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-79

Citation:

Online since:

January 2023

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. O. Parchin, H. J. Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and R. A. Abd-Alhameed, Reconfigurable antennas: Switching techniques— a survey,, Electronics (Switzerland), vol. 9, no. 2. MDPI AG, Feb. 01, 2020.

DOI: 10.3390/electronics9020336

Google Scholar

[2] C. Arora, S. S. Pattnaik, and R. N. Baral, SRR Superstrate for Gain and Bandwidth Enhancement of Microstrip Patch Antenna Array,, Progress In Electromagnetics Research B, vol. 76, p.73–85, 2017.

DOI: 10.2528/pierb17041405

Google Scholar

[3] N. Kaur, J. S. Sivia, and M. Kumar, Design of Nested Circular Ring-Shaped ultra-wideband Antenna Loaded with SRR and Defected Ground Plane,, Wireless Personal Communications, 2021,.

DOI: 10.1007/s11277-021-09272-8

Google Scholar

[4] C. Arora, S. S. Pattnaik, and R. N. Baral, Dual band microstrip patch antenna array loaded with split ring resonators and via holes,, AEU - International Journal of Electronics and Communications, vol. 93, p.253–260, Sep. 2018,.

DOI: 10.1016/j.aeue.2018.06.016

Google Scholar

[5] R. K. Verma and D. K. Srivastava, Bandwidth Improvement of Stub Loaded Compact ultra-wideband Microstrip Patch Antenna for C/X-Band Applications,, Wireless Personal Communications, vol. 120, no. 1, p.185–202, Sep. 2021,.

DOI: 10.1007/s11277-021-08441-z

Google Scholar

[6] P. v. Anila, V. P. Sarin, M. Manoj, M. Remsha, and P. Mohanan, Broadband non-resonant split ring resonator-based artificial high dielectric substrate,, AEU - International Journal of Electronics and Communications, vol. 117, Apr. 2020,.

DOI: 10.1016/j.aeue.2020.153095

Google Scholar

[7] A. Al-Ahmadi and Y. S. H. Khraisat, Bandwidth Enhancement of Microstrip Patch Antenna,, Applied Physics Research, vol. 11, no. 1, p.35, Jan. 2019,.

DOI: 10.5539/apr.v11n1p35

Google Scholar

[8] Kim JH, Ahn C-H, and Chun J-C, Bandwidth enhancementof a slot antenna with an open stub,, Microwave and Optical Technology Letters, vol. 60, no. 1, p.248–252, Jan. 2017,.

DOI: 10.1002/mop.30951

Google Scholar

[9] D. Tripathi, D. K. Srivastava, and R. K. Verma, Bandwidth Enhancement of Slotted Rectangular Wideband Microstrip Antenna for the Application of WLAN/WiMAX,, Wireless Personal Communications, vol. 119, no. 2, p.1193–1207, Jul. 2021,.

DOI: 10.1007/s11277-021-08257-x

Google Scholar

[10] A. Yadav, V. K. Singh, and H. Mohan, Design of a U-shaped circularly polarized wearable antenna with DGS on a fabric substrate for WLAN and C-band applications,, Journal of Computational Electronics, vol. 18, no. 3, p.1103–1109, Sep. 2019,.

DOI: 10.1007/s10825-019-01342-2

Google Scholar

[11] T. Saeidi, I. Ismail, W. P. Wen, A. R. H. Alhawari, and A. Mohammadi, ultra-wideband antennas for wireless communication applications,, International Journal of Antennas and Propagation, vol. 2019. Hindawi Limited, 2019.

DOI: 10.1155/2019/7918765

Google Scholar

[12] T. Sabapathy, M. A. Bashah, M. Jusoh, P. J. Soh and M. R. Kamarudin, Frequency reconfigurable rectangular antenna with T-slotted feed line,, 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 2016, pp.81-84,.

DOI: 10.1109/icramet.2016.7849587

Google Scholar

[13] Y. P. Selvam et al., A low-profile frequency- and pattern-reconfigurable antenna,, IEEE Antennas and Wireless Propagation Letters, vol. 16, p.3047–3050, Oct. 2017,.

DOI: 10.1109/lawp.2017.2759960

Google Scholar

[14] F. Zadehparizi and S. Jam, An improved teaching-learning–based optimization for design of frequency reconfigurable antennas,, International Journal of Communication Systems, vol. 32, no. 12, Aug. 2019,.

DOI: 10.1002/dac.4030

Google Scholar

[15] Y. P. Selvam et al., A low-profile frequency- and pattern-reconfigurable antenna,, IEEE Antennas and Wireless Propagation Letters, vol. 16, p.3047–3050, Oct. 2017,.

DOI: 10.1109/lawp.2017.2759960

Google Scholar

[16] H. F. Abutarboush et al., A Reconfigurable Wideband and Multiband Antenna Using Dual-Patch Elements for Compact Wireless Devices,, in IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp.36-43, Jan. 2012,.

DOI: 10.1109/tap.2011.2167925

Google Scholar

[17] Y. P. Selvam, L. Elumalai, M. G. N. Alsath, M. Kanagasabai, S. Subbaraj, and S. Kingsly, Novel Frequency- A nd Pattern-Reconfigurable Rhombic Patch Antenna with Switchable Polarization,, IEEE Antennas and Wireless Propagation Letters, vol. 16, p.1639–1642, 2017,.

DOI: 10.1109/lawp.2017.2660069

Google Scholar

[18] Y. B. Chaouche, I. Messaoudene, I. Benmabrouk, M. Nedil, and F. Bouttout, A Compact CPW-Fed Reconfigurable Fractal Antenna for Switchable Multiband Systems,, Sep. 2019.

DOI: 10.1049/iet-map.2018.5005

Google Scholar

[19] A. Ghaffar, X. J. Li, N. Hussain, and W. A. Awan, Flexible Frequency and Radiation Pattern Reconfigurable Antenna for Multi-band Applications,, 4th Australian Microwave Symposium (AMS), 2020.

DOI: 10.1109/ams48904.2020.9059296

Google Scholar

[20] D. E. Anagnostou et al., Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna,, IEEE Transactions on Antennas and Propagation, vol. 54, no. 2, p.422–432, Feb. 2006,.

DOI: 10.1109/tap.2005.863399

Google Scholar

[21] Nguyen-Trong., H. L. N, and Fumeaux C, A dual-band dual-pattern frequency-reconfigurable antenna,, Microwave and Optical Technology Letters, vol. 59, no. 11, p.2710–2715, Nov. 2017,.

DOI: 10.1002/mop.30815

Google Scholar

[22] K. Dalal, T. Singh, & Pawan, and K. Singh, Multiband reconfigurable antennas for future wireless communication systems,, Indian Journal of Radio & Space Physics, vol. 49, p.79–97, (2020).

Google Scholar

[23] A. A. Palsokar and S. L. Lahudkar, Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode,, AEU - International Journal of Electronics and Communications, vol. 125, Oct. 2020,.

DOI: 10.1016/j.aeue.2020.153370

Google Scholar

[24] A. Boufrioua, Frequency Reconfigurable Antenna Designs Using PIN Diode for Wireless Communication Applications,, Wireless Personal Communications, vol. 110, no. 4, p.1879–1885, Feb. 2020,.

DOI: 10.1007/s11277-019-06816-x

Google Scholar

[25] A. K. Saurabh, P. S. Rathore, and M. K. Meshram, Compact wideband four-element MIMO antenna with high isolation,, Electronics Letters, vol. 56, no. 3, p.117–119, Feb. 2020,.

DOI: 10.1049/el.2019.2871

Google Scholar

[26] R. Mark, N. Mishra, K. Mandal, P. P. Sarkar, and S. Das, Hexagonal ring fractal antenna with dumb bell shaped defected ground structure for multiband wireless applications,, AEU - International Journal of Electronics and Communications, vol. 94, p.42–50, Sep. 2018,.

DOI: 10.1016/j.aeue.2018.06.039

Google Scholar

[27] S. Tripathi, A. Mohan, and S. Yadav, A compact frequency-reconfigurable fractal UWB antenna using reconfigurable ground plane,, Microwave and Optical Technology Letters, vol. 59, no. 8, p.1800–1808, Aug. 2017,.

DOI: 10.1002/mop.30631

Google Scholar

[28] Y. K. Choukiker and S. K. Behera, Wideband Frequency Reconfigurable Koch Snowflake Fractal Antenna,, IET Microwaves, Antennas & Propagation , vol. 11, no. 2, p.203–208, Jan. 2017,.

DOI: 10.1049/iet-map.2016.0238

Google Scholar

[29] Mansoul A and Seddiki ML., Multiband reconfigurable Bowtie slot antenna using switchable slot extensions for WiFi, WiMAX, and WLAN applications.,, Microwave and Optical Technology Letters, vol. 60, no. 2, p.413–418, Feb. 2018,.

DOI: 10.1002/mop.30981

Google Scholar

[30] N. Kumar Sahu and A. Kumar Sharma, An Investigation of Pattern and Frequency Reconfigurable Microstrip Slot Antenna Using PIN Diodes,, 2017.

DOI: 10.1109/piers.2017.8261884

Google Scholar

[31] Singh, C., Kumawat, G. A Compact Rectangular ultra-Wideband Microstrip Patch Antenna with Double Band Notch Feature at Wi-Max and WLAN. Wireless Pers Commun 114, 2063–2077 (2020). https://doi.org/10.1007/s11277-020-07465-1.

DOI: 10.1007/s11277-020-07465-1

Google Scholar

[32] Li L, Nan J, Liu J, Tao C (2020). A compact UWB antenna with triple band notch reconfigurability. International Journal of Microwave and Wireless Technologies 1–7. https://doi.org/10.1017/ S1759078720001580.

DOI: 10.1017/s1759078720001580

Google Scholar

[33] Devana, V.N.K.R., Satyanarayana, V., Lakshmi, A.V. et al. A novel compact fractal UWB antenna with dual band notched characteristics. Analog Integr Circ Sig Process 110, 349–360 (2022). https://doi.org/10.1007/s10470-021-01958-0.

DOI: 10.1007/s10470-021-01958-0

Google Scholar

[34] Amir H. Nazeri, A. Falahati, R.M. Edwards, A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications, AEU - International Journal of Electronics and Communications, Volume 101, 2019, Pages 1-8, ISSN 1434-8411, https://doi.org/10.1016/j.aeue.2019.01.018.

DOI: 10.1016/j.aeue.2019.01.018

Google Scholar

[35] Ali, T., Fatima, N., & Biradar, R. C. (2018). A miniaturized multiband reconfgurable fractal slot antenna for GPS / GNSS / Bluetooth / WiMAX / X-band applications. AEU-International Journal of Electronics and Communications, 94, 234–243.

DOI: 10.1016/j.aeue.2018.07.017

Google Scholar

[36] Idris, I. H., Hamid, M. R., Kamardin, K., & Rahim, M. K. A. (2018). A multi to wideband frequency reconfigurable antenna. International Journal of RF and Microwave Computer-Aided Engineering,28(4), 21216.

DOI: 10.1002/mmce.21216

Google Scholar

[37] Liang Wang et al 2020 J. Phys.: Conf. Ser. 1550 042059.

Google Scholar

[38] Karthika, K., Kavitha, K. Reconfigurable Antennas for Advanced Wireless Communications: A Review. Wireless Pers Commun 120, 2711–2771 (2021).

DOI: 10.1007/s11277-021-08555-4

Google Scholar

[39] A.Yadav, S. Agrawal, R.P. Yadav, SRR and S-Shape Slot Loaded Triple Band Notched UWB Antenna, International Journal of Electronics and Communications (2017), doi:10.1016/ j.aeue.2017.06.003.

DOI: 10.1016/j.aeue.2017.06.003

Google Scholar

[40] Partha Pratim Shome & Taimoor Khan (2020): Switchable triple band-notched UWB antenna modeling for interference rejection from dual WiMAX bands and satellite C-band service, Journal of Electromagnetic Waves and Applications,.

DOI: 10.1080/09205071.2020.1806115

Google Scholar