[1]
Ziliaskopoulos A K. A Linear Programming Model for The Single Destination System Optimum Dynamic Traffic Assignment Problem[J]. Transportation Science, 2000,34(1):37-49.
DOI: 10.1287/trsc.34.1.37.12281
Google Scholar
[2]
Hamacher H W, Tjandra S A. Mathematical Modeling of Evacuation Problems - a state of art[C]. Pedestrian and Evacuation Dynamics, 2001:59-74.
Google Scholar
[3]
Yamada T. A Network Flow Approach to A City Emergency Evacuation Planning[J]. International Journal of Systems Science, 1996, 27(10):931-936.
DOI: 10.1080/00207729608929296
Google Scholar
[4]
Cova T J,Johnson J P. A Network Flow Model for Lane-based Evacuation Routing[J]. Transportation Research Part A: Policy and Practice, 2003, 37(7):579-604.
DOI: 10.1016/s0965-8564(03)00007-7
Google Scholar
[5]
Han D L. Evacuation Modeling and Operations Using Dynamic Traffic Assignment and Most-desirable-destination Approaches[C]. Washington D.C.: The 84th Transportation Research Board Annual Meeting, 2005:964-969.
Google Scholar
[6]
Han D L. Evacuation Modeling and Operations Using Dynamic Traffic Assignment and Most-desirable-destination Approaches[C]. Washington D.C.: The 84th Transportation Research Board Annual Meeting, 2005:964-969.
Google Scholar
[7]
Carey M. Optimal Time-varying Flows on Congestion Networks[J]. Operations Research, 1987, 35(1):58-69.
DOI: 10.1287/opre.35.1.58
Google Scholar
[8]
Ho J K. A Successive Linear Optimization Approach to The Dynamic Ttraffic Assignment Problem[J]. Transportation Science, 1980, 14(4):295-305.
DOI: 10.1287/trsc.14.4.295
Google Scholar