The Effect of Electrospinning Parameters on the Electrospun Polybutylene Adipate Co-Terephthalate (PBAT) Biodegradable Scaffold

Article Preview

Abstract:

Electrospinning is a cost-effective and versatile technique to fabricate continuous fibers ranging from submicron diameter to nanometer diameter. Polybutylene adipate-co-terephthalate (PBAT) has been investigated as a fibrous scaffold because of its low crystallinity, rapid biodegradability, and excellent mechanical properties, particularly for its high toughness and flexibility. However, the potential of the PBAT fibrous scaffold for medical purposes is still limited. PBAT blends with biocompatible polymers have been developed and investigated for tissue engineering applications. Herein, the preliminary research examines the processability of neat PBAT as a fibrous scaffold by varying several electrospinning processing parameters, such as solution concentration, voltage, flow rate, and tip to collector distance. The aim is to obtain continuous, smooth, and bead-free fibers. The electrospun fibers were examined using a scanning electron microscope (SEM) to determine its diameters. The optimum parameters for obtaining a continuous, bead-free PBAT fibrous scaffold were 20% w/v concentration, 19 kV voltage, 2 mL/h flow rate, and a 15 cm distance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Topuz and T. Uyar, "Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon," Mater. Sci. Eng. C, vol. 80, p.371–378, 2017.

DOI: 10.1016/j.msec.2017.06.001

Google Scholar

[2] G.R. Williams, B.T. Raimi-Abraham, and C.J. Luo, "Electrospinning fundamentals," Nanofibres Drug Deliv., p.24–59, 2018.

DOI: 10.2307/j.ctv550dd1.6

Google Scholar

[3] R. Ghobeira, M. Asadian, C. Vercruysse, H. Declercq, N. De Geyter, and R. Morent, "Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters," Polymer (Guildf)., vol. 157, no. October, p.19–31, 2018.

DOI: 10.1016/j.polymer.2018.10.022

Google Scholar

[4] R. Khajavi and M. Abbasipour, Controlling nanofiber morphology by the electrospinning process, no. 2. Elsevier Ltd., 2017.

DOI: 10.1016/b978-0-08-100907-9.00005-2

Google Scholar

[5] S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H. Y. Kim, "Electrospun nanofibers: New generation materials for advanced applications," Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 217, p.36–48, 2017.

DOI: 10.1016/j.mseb.2017.01.001

Google Scholar

[6] M. Rahmati, D. K. Mills, A. M. Urbanska, M. R. Saeb, J. R. Venugopal, S. Ramakrishna, and M. Mozafari, "Electrospinning for tissue engineering applications," Prog. Mater. Sci., p.100721, 2020.

DOI: 10.1016/j.pmatsci.2020.100721

Google Scholar

[7] P. H. Kim and J. Y. Cho, "Myocardial tissue engineering using electrospun nanofiber composites," BMB Rep., vol. 49, no. 1, p.26–36, 2016, doi:10.5483/BMBRep. 2016.49.1.165.

DOI: 10.5483/bmbrep.2016.49.1.165

Google Scholar

[8] T. C. Suh, A. Y. Amanah, and J. M. Gluck, "Electrospun scaffolds and induced pluripotent stem cell-derived cardiomyocytes for cardiac tissue engineering applications," Bioengineering, vol. 7, no. 3, p.1–22, 2020.

DOI: 10.3390/bioengineering7030105

Google Scholar

[9] L. A. Can-Herrera, A. I. Oliva, M. A. A. Dzul-Cervantes, O. F. Pacheco-Salazar, and J. M. Cervantes-Uc, "Morphological and mechanical properties of electrospun polycaprolactone scaffolds: Effect of applied voltage," Polymers (Basel)., vol. 13, no. 4, p.1–16, 2021.

DOI: 10.3390/polym13040662

Google Scholar

[10] B. Tarus, N. Fadel, A. Al-Oufy, and M. El-Messiry, "Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats," Alexandria Eng. J., vol. 55, no. 3, p.2975–2984, 2016.

DOI: 10.1016/j.aej.2016.04.025

Google Scholar

[11] J. Lasprilla-Botero, M. Álvarez-Láinez, and J. M. Lagaron, "The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers," Mater. Today Commun., vol. 14, no. December 2017, p.1–9, 2018.

DOI: 10.1016/j.mtcomm.2017.12.003

Google Scholar

[12] A. Haider, S. Haider, and I. K. Kang, "A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology," Arab. J. Chem., vol. 11, no. 8, p.1165–1188, 2018.

DOI: 10.1016/j.arabjc.2015.11.015

Google Scholar

[13] K. A. G. Katsogiannis, G. T. Vladisavljević, and S. Georgiadou, "Porous electrospun polycaprolactone fibers: Effect of process parameters," J. Polym. Sci. Part B Polym. Phys., vol. 54, no. 18, p.1878–1888, 2016.

DOI: 10.1002/polb.24090

Google Scholar

[14] Z. Asvar, E. Mirzaei, N. Azarpira, B. Geramizadeh, and M. Fadaie, "Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology," J. Mech. Behav. Biomed. Mater., vol. 75, no. August, p.369–378, 2017.

DOI: 10.1016/j.jmbbm.2017.08.004

Google Scholar

[15] T. Horii, H. Tsujimoto, A. Hagiwara, N. Isogai, Y. Sueyoshi, S. Kageyama, T. Yoshida, K. Kobayashi, H. Minato, J. Ueda, H. Ichikawa, and A. Kawauchi,, "Effects of Fiber Diameter and Spacing Size of an Artificial Scaffold on the In Vivo Cellular Response and Tissue Remodeling," ACS Appl. Bio Mater., vol. 4, no. 9, p.6924–6936, Sep. 2021.

DOI: 10.1021/acsabm.1c00572

Google Scholar

[16] R. M. Nezarati, M. B. Eifert, and E. Cosgriff-Hernandez, "Effects of humidity and solution viscosity on electrospun fiber morphology," Tissue Eng. - Part C Methods, vol. 19, no. 10, p.810–819, 2013.

DOI: 10.1089/ten.tec.2012.0671

Google Scholar

[17] M. Rahmati, D. K. Mills, A. M. Urbanska, M. R. Saeb, J. R. Venugopal, S. Ramakrishna, and M. Mozafari, "Electrospinning for tissue engineering applications," Prog. Mater. Sci., vol. 117, no. October 2016, p.100721, 2021.

DOI: 10.1016/j.pmatsci.2020.100721

Google Scholar

[18] S. Zargham, S. Bazgir, A. Tavakoli, A. S. Rashidi, and R. Damerchely, "The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber," J. Eng. Fiber. Fabr., vol. 7, no. 4, p.42–49, 2012.

DOI: 10.1177/155892501200700414

Google Scholar

[19] T. M. Subrahmanya, A. Arshad, P. T. Lin, J. Widakdo, H. K. Makari, H. F. M. Austria, C. Hu, J. Lai, and W. Hung, "A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues," RSC Adv., vol. 11, no. 16, p.9638–9663, 2021.

DOI: 10.1039/d1ra00060h

Google Scholar

[20] M. S. Islam, B. C. Ang, A. Andriyana, and A. M. Afifi, "A review on fabrication of nanofibers via electrospinning and their applications," SN Appl. Sci., vol. 1, no. 10, p.1–16, 2019.

DOI: 10.1007/s42452-019-1288-4

Google Scholar