[1]
A. Fantasse, E. K. Lakhal, A. Idlimam, M. Kouhila, F. Berroug, and Y. El Haloui. Management of hydroxide sludge waste using hygroscopic gravimetric method and physico-chemical characterization. Materials Today: Proceedings. 27(2020) 3021–3027.
DOI: 10.1016/j.matpr.2020.03.498
Google Scholar
[2]
M. Dahhou, M. El Moussaouiti, M. El Morhit, S. Gamouh, and S. Moustahsine.Drinking water sludge of the Moroccan capital: Statistical analysis of its environmental aspects.Journal of Taibah University for Science. 11(5) (2017) 749–758.
DOI: 10.1016/j.jtusci.2016.09.003
Google Scholar
[3]
A. Benlalla, M. Elmoussaouiti, M. Cherkaoui, L. Ait Hsain, and M. Assafi. Characterization and valorization of drinking water sludges applied to agricultural spreading. Journal of Materials and Environmental Science. 6 (6) (2015) 1692–1698
Google Scholar
[4]
L. Chahid, A. Yaacoubi, A. Bacaoui, and E. Lakhal.Valorization of drinking water treatment sludge (DWTS): Characterization and applications as coagulant and sorbent for Olive Mill Wastewater (OMW). Journal of Materials and Environmental sciences. 6(9) (2015) 2520.
Google Scholar
[5]
M. O. Belloulid, H. Hamdi, and L. Mandi.Solar Greenhouse Drying of Wastewater Sludges Under Arid Climate. Waste and Biomass Valorization. 8 (2015)193–202.
DOI: 10.1007/s12649-016-9614-1
Google Scholar
[6]
L. Bennamoun, J. Fraikin, L., Li, and A. Léonard.Forced convective drying of wastewater sludge with the presentation of exergy analysis of the dryer. Chemical Engineering Communications. 203(7) (2017) 855–860.
DOI: 10.1080/00986445.2015.1114475
Google Scholar
[7]
M. Vivekanandan, K. Periasamy, C. Dinesh Babu, G. Selvakumar, and R. Arivazhagan. Experimental and CFD investigation of six shapes of solar greenhouse dryer in no load conditions to identify the ideal shape of dryer. Materials Today: Proceedings. 37 (2021) 1409–1416.
DOI: 10.1016/j.matpr.2020.07.062
Google Scholar
[8]
S. Mishra, S. Verma, S. Chowdhury, and G. Dwivedi.Analysis of recent developments in greenhouse dryer on various parameters- a review. Materials Today: Proceedings. 38 (2021) 371–377.
DOI: 10.1016/j.matpr.2020.07.429
Google Scholar
[9]
M. O. Belloulid, H. Hamdi, L. Mandi, and N. Ouazzani.Solar drying of wastewater sludge: a case study in Marrakesh, Morocco. Environmental technology . 40 (10) (2019) 1316–1322.
DOI: 10.1080/09593330.2017.1421713
Google Scholar
[10]
A. Khanlari, A. Doğuş Tuncer, A. Sözen, C. Şirin, and A. Gungor.Energetic, environmental and economic analysis of drying municipal sewage sludge with a modified sustainable solar drying system.Solar Energy. 208 (2020) 787–799.
DOI: 10.1016/j.solener.2020.08.039
Google Scholar
[11]
A. Kumar and G.N. Tiwari.Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes. Journal of food engineering. 79(4) (2007) 1337–1350
DOI: 10.1016/j.jfoodeng.2006.04.026
Google Scholar
[12]
P.S. Chauhan, A. Kumar, C. Nuntadusit, and S. S. Mishra.Drying Kinetics, Quality Assessment, and Economic Analysis of Bitter Gourd Flakes Drying Inside Forced Convection Greenhouse Dryer. Journal of Solar Energy Engineering. 140 (5) (2018) 51001.
DOI: 10.1115/1.4039891
Google Scholar
[13]
E.A. Almuhanna.Utilization of a Solar Greenhouse as a Solar Dryer for Drying Dates under the Climatic Conditions of the Eastern Province of Saudi Arabia, Journal of Agricultural Science. 4(3) (2012) 237.
DOI: 10.5539/jas.v4n3p237
Google Scholar