[1]
B.S.C.J. Newman, Advanced concrete technology. 2003.
Google Scholar
[2]
M. Shetty, Concrete Technology Theory & Practice. New Delhi: S, CHAND & Company, Ram Nagar, 2005.
Google Scholar
[3]
M. E. Gülşan, R. Alzeebaree, A. A. Rasheed, A. Niş, and A. E. Kurtoğlu, Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber, Construction and Building Materials, vol. 211, pp.271-283, 2019, doi: https://doi.org/.
DOI: 10.1016/j.conbuildmat.2019.03.228
Google Scholar
[4]
A. Niş, N. A. Eren, and A. Çevik, Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete, Ceramics International, vol. 47, no. 17, pp.23905-23918, 2021.
DOI: 10.1016/j.ceramint.2021.05.099
Google Scholar
[5]
P. S. Song and S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete, Construction and Building Materials, vol. 18, no. 9, pp.669-673, 2004.
DOI: 10.1016/j.conbuildmat.2004.04.027
Google Scholar
[6]
D. ELAVARASI and K. S. R. MOHAN, Performance of slurry infiltrated fibrous concrete (sifcon) with silica fume, International. Journal. Chemical Science, vol. 14, no. 0972-768X, 2016. [Online]. Available: www.semanticscholar.org.
Google Scholar
[7]
M. Fouad, Using slurry infiltrated fiber concrete as new technique in repairing of defected concrete structures, The American Academic Research Institute In Iraq, 2018.
Google Scholar
[8]
M. Drdlová, P. Bibora, and R. Čechmánek, Blast resistance of slurry infiltrated fibre concrete with hybrid fibre reinforcement, presented at the International Conference Building Materials, Product and Technologies, 2018.
DOI: 10.1088/1757-899x/379/1/012024
Google Scholar
[9]
M. Ipek and M. Aksu, The effect of different types of fiber on flexure strength and fracture toughness in SIFCON, Construction and Building Materials, vol. 214, pp.207-218, 2019.
DOI: 10.1016/j.conbuildmat.2019.04.055
Google Scholar
[10]
S. S. Khamees, M. M. Kadhum, and N. A. Alwash, Effect of hollow ratio and cross-section shape on the behavior of hollow SIFCON columns, Journal of King Saud University - Engineering Sciences, vol. 33, no. 3, pp.166-175, 2021, doi: https://doi.org/10.1016/ j.jksues.2020.04.001.
DOI: 10.1016/j.jksues.2020.04.001
Google Scholar
[11]
N. M. Al–Abdalay, H. A. Zeini, and H. Z. Kubba, Effect of impact load on SIFCON, Global Journal of Researches in Engineering, vol. 19, no. 0975-5861, 2019.
Google Scholar
[12]
A. Beglarigale, Ç. Yalçınkaya, H. Yiğiter, and H. Yazıcı, Flexural performance of SIFCON composites subjected to high temperature, Construction and Building Materials, vol. 104, pp.99-108, 2016.
DOI: 10.1016/j.conbuildmat.2015.12.034
Google Scholar
[13]
T. S. Al-Attar, S. Salih, Q. Frayyeh, M. Ali, M. A. Al-Neami, and W. S. AbdulSahib, Fresh and some mechanical properties of sifcon containing silica fume, MATEC Web of Conferences, vol. 162, 2018.
DOI: 10.1051/matecconf/201816202003
Google Scholar
[14]
S. M. S. Taher, S. T. Saadullah, J. H. Haido, and B. A. Tayeh, Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand, Case Studies in Construction Materials, vol. 15, 2021.
DOI: 10.1016/j.cscm.2021.e00744
Google Scholar
[15]
M. I. A. Aleem and P. D. Arumairaj, Geopolymer Concrete- a Review, International Journal of Engineering Sciences & Emerging Technologies, vol. 1, no. 2, pp.118-122, 2012.
DOI: 10.7323/ijeset/v1_i2_14
Google Scholar
[16]
B. Singh, G. Ishwarya, M. Gupta, and S. K. Bhattacharyya, Geopolymer concrete: A review of some recent developments, Construction and Building Materials, vol. 85, pp.78-90, 2015.
DOI: 10.1016/j.conbuildmat.2015.03.036
Google Scholar
[17]
N. B. Singh and B. Middendorf, Geopolymers as an alternative to Portland cement: An overview, Construction and Building Materials, vol. 237, 2020.
DOI: 10.1016/j.conbuildmat.2019.117455
Google Scholar
[18]
M. Nawaz, A. Heitor, and M. Sivakumar, Geopolymers in construction - recent developments, Construction and Building Materials, vol. 260, 2020.
DOI: 10.1016/j.conbuildmat.2020.120472
Google Scholar
[19]
A. GÜLtekİN and K. Ramyar, Uçucu kül tabanlı geopolimer SIFCON'ların eğilme dayanımı ve tokluk özelliklerinin incelenmesi, El-Cezeri Fen ve Mühendislik Dergisi, vol. 9, no. 2148-3736, 2021.
DOI: 10.31202/ecjse.973668
Google Scholar
[20]
N. A. Lloyd and B. V. Rangan, Geopolymer Concrete with Fly Ash, presented at the Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 2010.
Google Scholar
[21]
Y. H. M. Amran, R. Alyousef, H. Alabduljabbar, and M. El-Zeadani, Clean production and properties of geopolymer concrete; A review, Journal of Cleaner Production, vol. 251, 2020.
DOI: 10.1016/j.jclepro.2019.119679
Google Scholar
[22]
Si-Hwan Kim, Gum-Sung Ryu, Kyung-Taek Koh, and J.-H. Lee, Flowability and strength development characteristics of bottom ash based geopolymer, International Journal of Civil and Environmental Engineering, vol. 6, pp.852-857, 2012.
Google Scholar
[23]
B. V. Rangan, Fly ash-based geopolymer concrete, Curtin University of Technology, Perth, Australia, 2008.
Google Scholar
[24]
S. Balaji and G. S. Thirugnanam, Behaviour of reinforced concrete beams with SIFCON at various locations in the beam, KSCE Journal of Civil Engineering, vol. 22, no. 1, pp.161-166, 2017.
DOI: 10.1007/s12205-017-0498-9
Google Scholar
[25]
M. M. M. Al-Mashhadani, Strength behavior of geopolymer based SIFCON with different fibers, European Journal of Science and Technology, no. 2148-2683, 2021.
DOI: 10.31590/ejosat.1015350
Google Scholar
[26]
J. Junior, A. K. Saha, P. K. Sarker, and A. Pramanik, Workability and flexural properties of fibre-reinforced geopolymer using different mono and hybrid fibres, Materials (Basel), vol. 14, no. 16, Aug 8 2021.
DOI: 10.3390/ma14164447
Google Scholar
[27]
X. Gao, Q. L. Yu, R. Yu, and H. J. H. Brouwers, Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites, Materials and Structures, vol. 50, no. 2, 2017.
DOI: 10.1617/s11527-017-1030-x
Google Scholar
[28]
T. H. B. Oğuzhan Yavuz Bayraktar, Ahmet Benli b, Fuat Koksal, Mesut Türkoğlu, Gökhan Kaplan Sustainable one-part alkali activated slag/fly ash Geo-SIFCOM containing recycled sands: Mechanical, flexural, durability and microstructural properties, Sustainable Chemistry and Pharmacy, vol. 36, 2023.
DOI: 10.1016/j.scp.2023.101319
Google Scholar
[29]
Standard Specification for Standard Sand, ASTM-C778, 2013.
Google Scholar
[30]
Standard Test Method for Portland-Cement Content of Hardened Hydraulic-Cement Concrete, ASTM-C1084-19, 2020.
DOI: 10.1520/c1084
Google Scholar
[31]
Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM-C311-22, 2022.
DOI: 10.1520/c0311-04
Google Scholar
[32]
Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM-C230, 2007.
Google Scholar
[33]
Standard test method for compressive strength of cylindrical concrete specimens, ASTM-C39, 2014.
Google Scholar
[34]
S. S. Khamees, M. M. Kadhum, and N. A. Alwash, Effects of steel fibers geometry on the mechanical properties of SIFCON concrete, Civil Engineering Journal, vol. 6, no. 1, pp.21-33, 2020.
DOI: 10.28991/cej-2020-03091450
Google Scholar
[35]
Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM-C496, 2011.
Google Scholar
[36]
Standard test method for flexural strength of concrete (using simple beam with third point loading, ASTM-C78, 2002.
DOI: 10.1520/c0078_c0078m-21
Google Scholar