[1]
* * * The Different Materials Used In: Natural Gas Pipelines, https://www.lng2019.com/the-different-materials-used-in-natural-gas-pipelines/, (2019)
Google Scholar
[2]
Tumber S.: Pipe systems and materials: Design considerations, https://www.csemag.com/articles/pipe-systems-and-materials-design-considerations/, (2019)
Google Scholar
[3]
Sotoodeh K.: A Practical Guide to Piping and Valves for the Oil and Gas Industry, Gulf Professional Publishing, ISBN 978-0-12-823796-0, DOI: https://doi.org/10.1016/C2020-0-00637-7, (2021)
Google Scholar
[4]
* * * Material selection of pressure piping, https://www.epowermetals.com/material-selection-of-pressure-piping.html, (2021)
Google Scholar
[5]
Barbara C., Pietrucha-Urbanik K., Urbanik M.: Analysis of the gas network failure and failure prediction using the Monte Carlo simulation method. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 18. 254-259. 10.17531/ein.2016.2.13, (2016)
DOI: 10.17531/ein.2016.2.13
Google Scholar
[6]
Wenhe W., Dan M., Feng Li, Chuanfu D., Faisal K.: Dynamic failure probability analysis of urban gas pipeline network, Journal of Loss Prevention in the Process Industries, 72, (2021)
DOI: 10.1016/j.jlp.2021.104552
Google Scholar
[7]
Urbanik M., Tchórzewska-Cieslak B., Pietrucha-Urbanik K.: Analysis of the Safety of Functioning Gas Pipelines in Terms of the Occurrence of Failures, Energies, 12, 2019, 3228
DOI: 10.3390/en12173228
Google Scholar
[8]
Hao M.J. a.o.: Risk analysis of urban gas pipeline network based on improved bow-tie model IOP Conf. Ser.: Earth Environ. Sci. 93, 012059, (2017)
DOI: 10.1088/1755-1315/93/1/012059
Google Scholar
[9]
Sk Kafi A., Golam K.: An Integrated Approach for Failure Analysis of Natural Gas Transmission Pipeline, CivilEng 2021, 2, 87–119
DOI: 10.3390/civileng2010006
Google Scholar
[10]
Aalirezaei A.: A Dynamic Predictive Analysis on Gas Pipeline Failure Consequence using Bayesian Network, Master of Applied Science in Industrial Systems Engineering University of Regina, Saskatchewan, (2021)
Google Scholar
[11]
Povilaitis M., Alzbutas R.: Risk and uncertainty analysis of gas pipeline failure and gas combustion consequence, Stochastic Environmental Research and Risk Assessment, 28, p.1431–1446, (2014)
DOI: 10.1007/s00477-013-0845-4
Google Scholar
[12]
Qiaoyan Y., Lei H., Yanhao L., Chong C., Kai y, Jiaquan L.: Pipeline Failure Assessment Based on Fuzzy Bayesian Network and AHP, Journal of Pipeline Systems Engineering and Practice, 14 (1), (2023)
Google Scholar
[13]
Phillip Dahlberg E., Bruno T.V.: Analysis of Gas Pipeline Failure, https://www.engineering.iastate.edu/~jdm/katrina/Data/Natural%20Gas/NG%20Transportation/Analysis%20of%20Gas%20Pipeline%20Failure.pdf
Google Scholar
[14]
Abdulkareem S., AlKareem A.: An Investigation of Generated Heat Flux during Welding with and without fillers Using Different Welding Conditions, International Journal of Simulation: Systems, ISSN: 1473-804x online, 1473-8031 print, (2020)
DOI: 10.5013/IJSSST.a.20.04.03
Google Scholar
[15]
Arora H, Singh R, Brar GS. Thermal and structural modelling of arc welding processes: A literature review, Measurement and Control.,52(7-8), 2019, pp.955-969
DOI: 10.1177/0020294019857747
Google Scholar
[16]
Ghosh A., Chattopadhyaya S., Dasb R.K, Sarkarb P.K.: Assessment of Heat Affected Zone of Submerged Arc Welding Process through Digital Image Processing, Procedia Engineering 10 (2011) 2782–2785
DOI: 10.1016/j.proeng.2011.04.462
Google Scholar
[17]
Dwivedi D, Lepkova K., Becker T.: Carbon steel corrosion: a review of key surface properties and characterization methods, RSC Advances 7(8), 2017, pp.4580-4610
DOI: 10.1039/c6ra25094g
Google Scholar
[18]
F. Khoshnaw: Chapter 1 - An introduction to welding of metallic materials, In: Welding of Metallic Materials, Elsevier, pp.1-35, 2023
DOI: 10.1016/B978-0-323-90552-7.00002-X
Google Scholar
[19]
Gasea, F., Dekam E.: Pressure Transient in pipe Networks; Simulation and Analysis, Journal of Engineering Research 14, (2010).
Google Scholar