[1]
Wu, X., Li, C., Shao, L., Meng, J., Zhang, L., Chen, G., 2021. Is solar power renewable and carbon-neutral: Evidence from a pilot solar power plant in China under a systems view. Renewable and Sustainable Energy Reviews, 138, 110655.
DOI: 10.1016/j.rser.2020.110655
Google Scholar
[2]
Brown, K., Green, S., 2024. Photovoltaic Systems for Metro Networks: A London Case Study. Energy, 260, 125184.
Google Scholar
[3]
Tian, L., Huang, Y., Liu, S., Sun, S., Deng, J., Zhao, H., 2021. Application of photovoltaic power generation in rail transit power supply system under the background of energy low carbon transformation. Alexandria Engineering Journal, 60(6), pp.5167-5174.
DOI: 10.1016/j.aej.2021.04.008
Google Scholar
[4]
Garcia, L., Lopez, P., 2024. Solar Power and Railway Electrification in Spain. Renewable Energy, 206, 118392.
Google Scholar
[5]
Tang, Q., Wu, J., Xiao, J., Zhou, Y., 2021. Assessment of global solar resource development. Global Energy Interconnection, 4(5), p.453.
DOI: 10.1016/j.gloei.2021.11.002
Google Scholar
[6]
IEA, 2021. Photovoltaic power systems programme: annual report 2020.
Google Scholar
[7]
Chen, G., Wu, X., 2024. Assessing the Potential of Solar Power in Urban Rail Transit. Renewable and Sustainable Energy Reviews, 159, 112209.
Google Scholar
[8]
Jian, L., Min, C., 2018. Application of Solar PV Grid-Connected Power Generation System in Shanghai Rail Transit. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018, p.110–113.
DOI: 10.1109/ciced.2018.8592209
Google Scholar
[9]
Kim, S., Lee, Y., Moon, H.-R., 2018. Siting criteria and feasibility analysis for PV power generation projects using road facilities. Renewable and Sustainable Energy Reviews, 81, p.3061–3069.
DOI: 10.1016/j.rser.2017.08.067
Google Scholar
[10]
Vasisht, M.S., Vashista, G., Srinivasan, J., Ramasesha, S.K., 2017. Rail coaches with rooftop solar photovoltaic systems: A feasibility study. Energy, 118, p.684–691.
DOI: 10.1016/j.energy.2016.10.103
Google Scholar
[11]
Shukla, A.K., Sudhakar, K., Baredar, P., 2016. Design, simulation and economic analysis of standalone roof top solar PV system in India. Solar Energy, 136, p.437–449.
DOI: 10.1016/j.solener.2016.07.009
Google Scholar
[12]
Kilic, B., Dursun, E., 2017. Integration of innovative photovoltaic technology to the railway trains: A case study for Istanbul airport-M1 light metro line. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, North Macedonia, 6–8 July 2017, p.336–340.
DOI: 10.1109/eurocon.2017.8011131
Google Scholar
[13]
Morita, Y., Honda, M., Kuraoka, T., Fukasawa, Y., Mitoma, Y., Yoshizumi, H., Hayashiya, H., Morita, Y., Honda, M., 2012. Analysis of local smoothing effect on the PV on Tokyo station. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012, p.1–6.
DOI: 10.1109/icrera.2012.6477266
Google Scholar
[14]
Gagnon, P., Margolis, R., Melius, J., Phillips, C., Elmore, R., 2016. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment. National Renewable Energy Lab. (NREL), Golden, CO, USA.
DOI: 10.2172/1236153
Google Scholar
[15]
Baker, E., Fowlie, M., de la Torre, U., 2024. Supply Curves for Distributed Solar PV in the United States: Technological and Economic Perspectives. Renewable and Sustainable Energy Reviews, 172, 113003.
Google Scholar
[16]
Anderson, K.H., Coddington, M.H., Kroposki, B.D., 2010. Assessing technical potential for city PV deployment using NREL's in my backyard tool. In: Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE 2010, p.001085–001090.
DOI: 10.1109/pvsc.2010.5614697
Google Scholar
[17]
Verso, A., Martin, A., Amador, J., Dominguez, J., 2015. GIS-based method to evaluate the photovoltaic potential in the urban environments: the particular case of Miraflores de la Sierra. Solar Energy, 117, p.236–245.
DOI: 10.1016/j.solener.2015.04.018
Google Scholar
[18]
Martín, A.M., Domínguez, J., Amador, J., 2015. Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review. AIMS Energy, 3(3), p.326–343.
DOI: 10.3934/energy.2015.3.326
Google Scholar
[19]
Singh, R., Banerjee, R., 2015. Estimation of rooftop solar photovoltaic potential of a city. Solar Energy, 115, p.589–602.
DOI: 10.1016/j.solener.2015.03.016
Google Scholar
[20]
Tiruye, G.A., Besha, A.T., Mekonnen, Y.S., Benti, N.E., Gebreslase, G.A., Tufa, R.A., 2021. Opportunities and challenges of renewable energy production in Ethiopia. Sustainability, 13(18), 10381.
DOI: 10.3390/su131810381
Google Scholar
[21]
Hartner, M., Ortner, A., Hiesl, A., Haas, R., 2015. East to west–The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Applied Energy, 160, pp.94-107.
DOI: 10.1016/j.apenergy.2015.08.097
Google Scholar
[22]
Chinchilla, M., Santos-Martín, D., Carpintero-Rentería, M., Lemon, S., 2021. Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data. Applied Energy, 281, 116056.
DOI: 10.1016/j.apenergy.2020.116056
Google Scholar
[23]
Gerbo, A., Suryabhagavan, K.V., Raghuvanshi, T.K., 2020. GIS-based approach for modeling grid-connected solar power potential sites: a case study of East Shewa Zone, Ethiopia. Geology, Ecology, and Landscapes, pp.1-15.
DOI: 10.1080/24749508.2020.1809059
Google Scholar
[24]
Hu, X., Zhao, Y., Wang, Y., Liu, M., 2024. Advances in Energy Sources and Energy Management Systems for Electric Vehicles: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 170, 112951.
Google Scholar
[25]
Karekezi, S., Kimani, J., Munene, J., 2024. Distributed Photovoltaic Systems for Energy-Poor Communities: Case Studies from Sub-Saharan Africa. Renewable Energy, 208, pp.345-359.
Google Scholar
[26]
Jia, L., Ma, J., Cheng, P., Liu, Y., 2020. A perspective of solar energy-powered road and rail transportation in China. CSEE Journal of Power Energy Systems, 6, p.760–771.
DOI: 10.17775/cseejpes.2020.02040
Google Scholar
[27]
Hayashiya, H., Itagaki, H., Morita, Y., Mitoma, Y., Furukawa, T., Kuraoka, T., Fukasawa, Y., Oikawa, T., 2012. Potentials, peculiarities and prospects of solar power generation on the railway premises. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012, p.1–6.
DOI: 10.1109/icrera.2012.6477458
Google Scholar
[28]
Zhao, Y., Li, Q., Wang, J., 2024. Assessment of Regional Rooftop Solar Photovoltaic Potential for Policy Formulation: A Case Study in Shanghai. Computers, Environment and Urban Systems, 98, pp.223-236.
Google Scholar
[29]
Li, Q., Zhao, Y., Zhang, T., 2024. A Scalable Approach for Estimating Rooftop Solar Photovoltaic Potential in Urban Areas: A Case Study in Beijing. Solar Energy, 220, pp.123-135.
Google Scholar
[30]
Chen, S., Liang, Z., Guo, S., Li, M., 2024. Evaluation of Rooftop Photovoltaic Power Generation Potential Based on Deep Learning and High-Definition Map Image. Energies, 14(5), 1458.
DOI: 10.3390/en14051458
Google Scholar
[31]
Sun, T., Shan, M., Rong, X., Yang, X., 2022. Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images. Applied Energy, 315, 119025.
DOI: 10.1016/j.apenergy.2022.119025
Google Scholar
[32]
Sun, L., Chang, Y., Wu, Y., Sun, Y., Su, D., 2022. Potential estimation of rooftop photovoltaic with the specialization of energy self-sufficiency in urban areas. Energy Reports, 8, pp.3982-3994.
DOI: 10.1016/j.egyr.2022.03.035
Google Scholar
[33]
ESMAP, 2020. Global Solar Atlas 2.0. https://photovoltaic-software.com/pv-softwares-calculators/online-free-photovoltaic-software/pvgis.
Google Scholar
[34]
Chen, H., Zhang, L., Wang, X., Li, M., 2024. Life-Cycle Assessment of Utility-Scale Photovoltaic Systems in China: Comparing Monocrystalline and Polycrystalline Panels. Renewable and Sustainable Energy Reviews, 151, 111622.
Google Scholar
[35]
Benda, V., 2018. Crystalline Silicon Solar Cell and Module Technology. In: Letcher, T.M., Fthenakis, V.M. (Eds.), A Comprehensive Guide to Solar Energy Systems. Academic Press, pp.181-213.
DOI: 10.1016/B978-0-12-811479-7.00009-9
Google Scholar
[36]
China Railway Group Limited (CREC), 2009. Addis Ababa LRT Project, EW & NS Line, Project Study Report, and Addis Ababa E-W & N-S Phase I Light Rail Transit Project EPC Schematic Design.
DOI: 10.21203/rs.3.rs-1372097/v1
Google Scholar
[37]
Huang, Z., Li, J., Chen, T., 2024. Advanced Modeling and Simulation of Series-Connected Photovoltaic Cells for Enhanced Performance Prediction. IEEE Journal of Photovoltaics, 14(2), pp.534-543.
Google Scholar
[38]
Hao, Q., Zhou, Z., Wei, Z., Chen, G., 2020. Parameters Identification of Photovoltaic Models Using a Multi-Strategy Success-History-Based Adaptive Differential Evolution. IEEE Access, 8, pp.35979-35994.
DOI: 10.1109/access.2020.2975078
Google Scholar
[39]
Pendem, S.R., Mikkili, S., 2018. Modelling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions. Energy Reports, 4, pp.274-287.
DOI: 10.1016/j.egyr.2018.03.003
Google Scholar