Study of Atmospheric Corrosion of Galvanized Steel Sheet in Addis Ababa Region Using Atmospheric Corrosion Models

Article Preview

Abstract:

The present study deals with the investigation of the long term atmospheric corrosion phenomena for galvanized steel sheet in the region of Addis Ababa in Ethiopia using various atmospheric corrosion models. Addis Ababa have transforming atmosphere type of urban/industrial atmosphere, and these changes are going to affect the atmospheric corrosion phenomena for galvanized steel sheet used in this region, which is investigated through atmospheric corrosion models using atmospheric data collected from National Meteorology Agency, Ethiopia for 21 years from 2000 to 2020. Atmospheric corrosivity category for Addis Ababa is determined, and it is found that with little deviation in atmospheric pollutant these categories can shift between C2 and C3 corrosivity category for galvanized steel sheet atmospheric corrosion. Further to study the atmospheric corrosion of galvanized steel sheet, standard atmospheric corrosion models were employed namely Feliu et al. model and Kucera et al. model. These studies corroborate the findings of atmospheric corrosion of galvanized steel sheet and cross verified with the similar region atmospheric corrosion experimental studies performed earlier on the same material. All the atmospheric corrosion models confirmed the trend of the atmospheric corrosion of galvanized steel sheet in the region of urban/industrial atmosphere type. And based on the comparative analysis of all models predictions with experimental results in literature, it is confirmed that the atmospheric corrosion model results are reliable for the study of short and long period of atmospheric corrosion of galvanized steel sheet in Addis Ababa region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-18

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.B. Wubaye, T. Gashaw, A.W. Worqlul, Y.T. Dile, M.T. Taye, A. Haileslassie, B. Zaitchik, D.A. Birhan, E. Adgo, J.A. Mohammed, T.M. Lebeza, A. Bantider, A. Seid, R. Srinivasan, Trends in Rainfall and Temperature Extremes in Ethiopia: Station and Agro-Ecological Zone Levels of Analysis. Atmosphere 14 (2023) 483.

DOI: 10.3390/atmos14030483

Google Scholar

[2] NMA. Climate Change National Adaptation Programme of Action (Napa) of Ethiopia; National Meteorological Services Agency, Ministry of Water Resources, Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2007.

DOI: 10.2172/639720

Google Scholar

[3] H. Kania, J. Mendala, J. Kozuba, M. Saternus, Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing—A Review, Materials, 13 (2020) 4168.

DOI: 10.3390/ma13184168

Google Scholar

[4] M. Safaeirad, M.R. Toroghinejad, F. Ashrafizadeh, Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets, J. Mater. Process. Technol. 196 (2008) 205–212.

DOI: 10.1016/j.jmatprotec.2007.05.035

Google Scholar

[5] Odnevall-Wallinder, C. Leygraf, A Critical Review on Corrosion and Runoff from Zinc and Zinc-Based Alloys in Atmospheric Environments, Corrosion, 73(9) (2017) 1060 – 1077.

DOI: 10.5006/2458

Google Scholar

[6] M. Shiri, D. Rezakhani, Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran, Metall. Mater. Trans. A, 51 (2020) 342 – 367.

DOI: 10.1007/s11661-019-05509-1

Google Scholar

[7] D. Thierry, N. LeBozec, A. LeGac, D. Persson, Long‐term atmospheric corrosion rates of hot dip galvanised steel and zinc‐aluminium‐magnesium coated steel, Mater. Corros. (2019) 1–8.

DOI: 10.1002/maco.201911010

Google Scholar

[8] D. Thierry, D. Persson, A. LeGac, N. LeBozec, A. Peltola, P. Väisänen, Long-term atmospheric corrosion of Zn–5%Al-coated steel and HDG during outdoor worldwide exposures, Corros. Eng. Sci. Technol. 55(7) (2020) 520–530.

DOI: 10.1080/1478422x.2020.1750162

Google Scholar

[9] Y.M. Panchenko, A.I. Marshakov, Prediction of First-Year Corrosion Losses of Carbon Steel and Zinc in Continental Regions, Materials 10 (2017) 422.

DOI: 10.3390/ma10040422

Google Scholar

[10] X. Wang, X. Li, X. Tian, Influence of temperature and relative humidity on the atmospheric corrosion of zinc in Field exposures and laboratory environments by atmospheric corrosion monitor, Int. J. Electrochem. Sci. 47 (2015) 8361-8373.

DOI: 10.1016/s1452-3981(23)11102-3

Google Scholar

[11] J.E. Rodríguez-Yáñez, E. Rivera-Fernández, D. Alvarado-González, M. Abdalah-Hernández, R. Quirós-Quirós, Prediction of atmospheric corrosion from meteorological parameters: Case of the atmospheric basin of the Costa Rican Western Central Valley, Atmósfera 36(1) (2023) 171-182.

DOI: 10.20937/atm.52966

Google Scholar

[12] A.A. Mikhailov, J. Tidblad, V. Kucera, The classification system of ISO 9223 standard and the dose-response functions assessing the corrosivity of outdoor atmospheres, Prot. Met. 138 (2004) 541-550.

DOI: 10.1023/b:prom.0000049517.14101.68

Google Scholar

[13] S. Feliu, M. Morcillo, S. Feliu Jr., The prediction of atmospheric corrosion from meteorological and pollution parameters -I: annual corrosion, Corros. Sci. 34 (1993a) 403–414.

DOI: 10.1016/0010-938x(93)90112-t

Google Scholar

[14] S. Feliu, M. Morcillo, S. Feliu Jr., "The prediction of atmospheric corrosion from meteorological and pollution parameters-II long term forecast, Corros. Sci. 34 (1993b) 415–422.

DOI: 10.1016/0010-938x(93)90113-u

Google Scholar

[15] E.V. Bendinelli, F.G. Nunes, A.P. Ordine, Anticorrosive Properties of Hot-Dip Galvanized Weathering Steel in Atmospheric Exposure, Mater. Sci. Appl. 11 (2020) 611-625.

DOI: 10.4236/msa.2020.119041

Google Scholar

[16] M.G. Fontana, Corrosion Engineering, McGraw Hill Education (India) Pvt Ltd, 2018.

Google Scholar

[17] D. Fuente de. la., J.G. Castano, M. Morcillo, Long-term atmospheric corrosion of zinc, Corros. Sci. 49 (2007) 1420–1436.

DOI: 10.1016/j.corsci.2006.08.003

Google Scholar

[18] Y.M. Panchenko, A.I. Marshakov, "Long-term prediction of metal corrosion losses in the atmosphere using a power-linear function" Corros. Sci. 109 (2016) 217–229.

DOI: 10.1016/j.corsci.2016.04.002

Google Scholar

[19] Z. Panossian, L. Mariaca, M. Morcillo, S. Flores, J. Rocha, J.J. Pena, F. Herrera, Steel cathodic protection afforded by zinc, aluminum, and zinc/aluminum alloy coatings in the atmosphere, Surf. Coat. Technol. 190 (2005) 244-248.

DOI: 10.1016/j.surfcoat.2004.04.023

Google Scholar

[20] R. Vera, R. Araya, C. Garín, S. Ossandón, P. Rojas, Study on the effect of atmospheric corrosion on mechanical properties with impact test: Carbon steel and Galvanized steel, Mater. Corros. (2019) 1–11.

DOI: 10.1002/maco.201810666

Google Scholar

[21] Y. Cai, Y. Xu, Y. Zhao, X. Ma, Atmospheric corrosion prediction: a review, Corros Rev. 38(4) (2020) 299–321.

Google Scholar

[22] V. Kucera, J. Tidblad, K. Kreislova, D. Knotkova, M. Faller, D. Reiss, R. Snethlage, T. Yates, J. Henriksen, M. Schreiner, M. Melcher, M. Ferm, R.A. Lefèvre, J. Kobus, UN/ECE ICP Materials Dose-response Functions for the Multi-pollutant Situation, Water Air Soil Pollut: Focus, 7 (2007) 249–258.

DOI: 10.1007/s11267-006-9080-z

Google Scholar

[23] CES 40 Compulsory Ethiopian Standard, Ethiopian Standards Institute, third ed., Ethiopian Standards Institute journal, Addis Ababa, 2015, pp.1-15.

DOI: 10.17576/geo-2023-1901-01

Google Scholar

[24] Y.T. Endale, Exposure and health risk assessment from consumption of pb contain water in Addis Ababa, Ethiopia, Heliyon (2021) 1-10.

DOI: 10.1016/j.heliyon.2021.e07946

Google Scholar

[25] ASTM G50 − 10, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, ASTM International, PA 19428-2959, 2010.

Google Scholar

[26] P. Montoya, I. Diaz, N. Granizo, D. Fuente, M. Morcillo, An study on accelerated corrosion testing of weathering steel, Mater. Chem. Phy. 142 (2013) 220-228.

DOI: 10.1016/j.matchemphys.2013.07.009

Google Scholar

[27] S. Feliu, M. Morcillo, B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 55(9) (1999) 883 - 891.

DOI: 10.5006/1.3284045

Google Scholar