[1]
G.B. Wubaye, T. Gashaw, A.W. Worqlul, Y.T. Dile, M.T. Taye, A. Haileslassie, B. Zaitchik, D.A. Birhan, E. Adgo, J.A. Mohammed, T.M. Lebeza, A. Bantider, A. Seid, R. Srinivasan, Trends in Rainfall and Temperature Extremes in Ethiopia: Station and Agro-Ecological Zone Levels of Analysis. Atmosphere 14 (2023) 483.
DOI: 10.3390/atmos14030483
Google Scholar
[2]
NMA. Climate Change National Adaptation Programme of Action (Napa) of Ethiopia; National Meteorological Services Agency, Ministry of Water Resources, Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2007.
DOI: 10.2172/639720
Google Scholar
[3]
H. Kania, J. Mendala, J. Kozuba, M. Saternus, Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing—A Review, Materials, 13 (2020) 4168.
DOI: 10.3390/ma13184168
Google Scholar
[4]
M. Safaeirad, M.R. Toroghinejad, F. Ashrafizadeh, Effect of microstructure and texture on formability and mechanical properties of hot-dip galvanized steel sheets, J. Mater. Process. Technol. 196 (2008) 205–212.
DOI: 10.1016/j.jmatprotec.2007.05.035
Google Scholar
[5]
Odnevall-Wallinder, C. Leygraf, A Critical Review on Corrosion and Runoff from Zinc and Zinc-Based Alloys in Atmospheric Environments, Corrosion, 73(9) (2017) 1060 – 1077.
DOI: 10.5006/2458
Google Scholar
[6]
M. Shiri, D. Rezakhani, Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran, Metall. Mater. Trans. A, 51 (2020) 342 – 367.
DOI: 10.1007/s11661-019-05509-1
Google Scholar
[7]
D. Thierry, N. LeBozec, A. LeGac, D. Persson, Long‐term atmospheric corrosion rates of hot dip galvanised steel and zinc‐aluminium‐magnesium coated steel, Mater. Corros. (2019) 1–8.
DOI: 10.1002/maco.201911010
Google Scholar
[8]
D. Thierry, D. Persson, A. LeGac, N. LeBozec, A. Peltola, P. Väisänen, Long-term atmospheric corrosion of Zn–5%Al-coated steel and HDG during outdoor worldwide exposures, Corros. Eng. Sci. Technol. 55(7) (2020) 520–530.
DOI: 10.1080/1478422x.2020.1750162
Google Scholar
[9]
Y.M. Panchenko, A.I. Marshakov, Prediction of First-Year Corrosion Losses of Carbon Steel and Zinc in Continental Regions, Materials 10 (2017) 422.
DOI: 10.3390/ma10040422
Google Scholar
[10]
X. Wang, X. Li, X. Tian, Influence of temperature and relative humidity on the atmospheric corrosion of zinc in Field exposures and laboratory environments by atmospheric corrosion monitor, Int. J. Electrochem. Sci. 47 (2015) 8361-8373.
DOI: 10.1016/s1452-3981(23)11102-3
Google Scholar
[11]
J.E. Rodríguez-Yáñez, E. Rivera-Fernández, D. Alvarado-González, M. Abdalah-Hernández, R. Quirós-Quirós, Prediction of atmospheric corrosion from meteorological parameters: Case of the atmospheric basin of the Costa Rican Western Central Valley, Atmósfera 36(1) (2023) 171-182.
DOI: 10.20937/atm.52966
Google Scholar
[12]
A.A. Mikhailov, J. Tidblad, V. Kucera, The classification system of ISO 9223 standard and the dose-response functions assessing the corrosivity of outdoor atmospheres, Prot. Met. 138 (2004) 541-550.
DOI: 10.1023/b:prom.0000049517.14101.68
Google Scholar
[13]
S. Feliu, M. Morcillo, S. Feliu Jr., The prediction of atmospheric corrosion from meteorological and pollution parameters -I: annual corrosion, Corros. Sci. 34 (1993a) 403–414.
DOI: 10.1016/0010-938x(93)90112-t
Google Scholar
[14]
S. Feliu, M. Morcillo, S. Feliu Jr., "The prediction of atmospheric corrosion from meteorological and pollution parameters-II long term forecast, Corros. Sci. 34 (1993b) 415–422.
DOI: 10.1016/0010-938x(93)90113-u
Google Scholar
[15]
E.V. Bendinelli, F.G. Nunes, A.P. Ordine, Anticorrosive Properties of Hot-Dip Galvanized Weathering Steel in Atmospheric Exposure, Mater. Sci. Appl. 11 (2020) 611-625.
DOI: 10.4236/msa.2020.119041
Google Scholar
[16]
M.G. Fontana, Corrosion Engineering, McGraw Hill Education (India) Pvt Ltd, 2018.
Google Scholar
[17]
D. Fuente de. la., J.G. Castano, M. Morcillo, Long-term atmospheric corrosion of zinc, Corros. Sci. 49 (2007) 1420–1436.
DOI: 10.1016/j.corsci.2006.08.003
Google Scholar
[18]
Y.M. Panchenko, A.I. Marshakov, "Long-term prediction of metal corrosion losses in the atmosphere using a power-linear function" Corros. Sci. 109 (2016) 217–229.
DOI: 10.1016/j.corsci.2016.04.002
Google Scholar
[19]
Z. Panossian, L. Mariaca, M. Morcillo, S. Flores, J. Rocha, J.J. Pena, F. Herrera, Steel cathodic protection afforded by zinc, aluminum, and zinc/aluminum alloy coatings in the atmosphere, Surf. Coat. Technol. 190 (2005) 244-248.
DOI: 10.1016/j.surfcoat.2004.04.023
Google Scholar
[20]
R. Vera, R. Araya, C. Garín, S. Ossandón, P. Rojas, Study on the effect of atmospheric corrosion on mechanical properties with impact test: Carbon steel and Galvanized steel, Mater. Corros. (2019) 1–11.
DOI: 10.1002/maco.201810666
Google Scholar
[21]
Y. Cai, Y. Xu, Y. Zhao, X. Ma, Atmospheric corrosion prediction: a review, Corros Rev. 38(4) (2020) 299–321.
Google Scholar
[22]
V. Kucera, J. Tidblad, K. Kreislova, D. Knotkova, M. Faller, D. Reiss, R. Snethlage, T. Yates, J. Henriksen, M. Schreiner, M. Melcher, M. Ferm, R.A. Lefèvre, J. Kobus, UN/ECE ICP Materials Dose-response Functions for the Multi-pollutant Situation, Water Air Soil Pollut: Focus, 7 (2007) 249–258.
DOI: 10.1007/s11267-006-9080-z
Google Scholar
[23]
CES 40 Compulsory Ethiopian Standard, Ethiopian Standards Institute, third ed., Ethiopian Standards Institute journal, Addis Ababa, 2015, pp.1-15.
DOI: 10.17576/geo-2023-1901-01
Google Scholar
[24]
Y.T. Endale, Exposure and health risk assessment from consumption of pb contain water in Addis Ababa, Ethiopia, Heliyon (2021) 1-10.
DOI: 10.1016/j.heliyon.2021.e07946
Google Scholar
[25]
ASTM G50 − 10, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, ASTM International, PA 19428-2959, 2010.
Google Scholar
[26]
P. Montoya, I. Diaz, N. Granizo, D. Fuente, M. Morcillo, An study on accelerated corrosion testing of weathering steel, Mater. Chem. Phy. 142 (2013) 220-228.
DOI: 10.1016/j.matchemphys.2013.07.009
Google Scholar
[27]
S. Feliu, M. Morcillo, B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 55(9) (1999) 883 - 891.
DOI: 10.5006/1.3284045
Google Scholar