[1]
Y.B. Guo, W. Li, I.S. Jawahir, Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: a state-of-art research review and analysis, Mach. Sci. Technol. 13 (2009) 437-470.
DOI: 10.1080/10910340903454922
Google Scholar
[2]
S. Saini, I.S. Ahuja, V.S. Sharma, Residual stresses, surface roughness, and tool wear in hard turning: a comprehensive review, Mater. Manuf. Process. 27 (2012) 583-598.
DOI: 10.1080/10426914.2011.585505
Google Scholar
[3]
C. Liu, S. Mittal, Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact, Wear 219 (1998) 128-140.
DOI: 10.1016/s0043-1648(98)00240-3
Google Scholar
[4]
Y. Matsumoto, F. Hashimoto, G. Lahoti, Surface integrity generated by precision hard turning, CIRP Ann. 48 (1999) 59-62.
DOI: 10.1016/s0007-8506(07)63131-x
Google Scholar
[5]
R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, Int. J. Mach. Tools Manuf. 44 (2004) 879-887.
DOI: 10.1016/j.ijmachtools.2004.02.016
Google Scholar
[6]
R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools, Int. J. Mach. Tools Manuf. 44 (2004) 1481-1491.
DOI: 10.1016/j.ijmachtools.2004.05.005
Google Scholar
[7]
J. Hua, R. Shivpuri, X. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometry, Mater. Sci. Eng. A 394 (2005) 238-248.
DOI: 10.1016/j.msea.2004.11.011
Google Scholar
[8]
J. Hua, D. Umbrello, R. Shivpuri, Investigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steel, J. Mater. Process. Technol. 171 (2006) 180-187.
DOI: 10.1016/j.jmatprotec.2005.06.087
Google Scholar
[9]
H. Peng, W. Tang, Y. Xing, X. Zhou, Semi-empirical prediction of turned surface residual stress for inconel 718 Grounded in Experiments and Finite Element Simulations, Mater. 14 (2021) 3937-3937.
DOI: 10.3390/ma14143937
Google Scholar
[10]
H. Peng, P. Dong, X. Cheng, C. Zhang, W. Tang, Y. Xing, X. Zhou, Semi-empirical prediction of residual stress distributions ıntroduced by turning inconel 718 alloy based on lorentz function, Mater. 13 (2020) 4341-4341.
DOI: 10.3390/ma13194341
Google Scholar
[11]
H. Javadi, W. Jomaa, V. Songmene, M. Brochu, P. Bocher, Inconel 718 superalloy controlled surface ıntegrity for fatigue applications produced by precision turning, Int. J. Precis. Eng. Manuf. 20 (2019) 1297-1310.
DOI: 10.1007/s12541-019-00145-6
Google Scholar
[12]
Y. Hua, Z. Liu, Experimental investigation of principal residual stress and fatigue performance for turned nickel-based superalloy inconel 718, Mater. 11 (2018) 879-879.
DOI: 10.3390/ma11060879
Google Scholar
[13]
M. Lavella, T. Berruti, E. Bosco, Residual stress analysis in inconel 718 milled turbine disk, Int. J. Mach. Machin. Mater. 4 (2009).
DOI: 10.1504/ijmmm.2008.023193
Google Scholar
[14]
E. Soufian, R. Darabi, M. Abouridouane, A. Reis, T. Bergs, Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallization, Int. J. Adv. Manuf. Technol. 122 (2022) 601-617.
DOI: 10.1007/s00170-022-09846-1
Google Scholar
[15]
R.S. Pawade, S.S. Joshi, P.K. Brahmankar, Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, Int. J. Mach. Tools Manuf. 48 (2008) 15-28.
DOI: 10.1016/j.ijmachtools.2007.08.004
Google Scholar
[16]
A. Jiang, J. Zhao, P. Cui, Z. Liu, B. Wang, Effects of TiAlN Coating thickness on machined surface roughness, surface residual stresses and fatigue life in turning inconel 718, Metals 14 (2024) 940.
DOI: 10.3390/met14080940
Google Scholar
[17]
V. Kant, G. Kartheek, P. Krishna, C. Sukjamsri, Residual stress evaluation using finite element modeling in turning of ti-6al-4v and its optimization using RSM, Smart Sustain. Manuf. Syst. 6 (2022) 20220009-20220009.
DOI: 10.1520/ssms20220009
Google Scholar
[18]
G. Styger, R.F. Laubscher, The prediction of the turned machining induced residual stresses in Ti6Al4V: A Critical Surface Integrity Descriptor, MATEC Web Conf. 347 (2021) 00037-00037.
DOI: 10.1051/matecconf/202134700037
Google Scholar
[19]
C.H. Wölfle, M. Wimmer, M. Zubair, C. Krempaszky, M. Zäh, E. Werner, Towards real-time prediction of residual stresses induced by peripheral milling of Ti–6Al–4V, Contin. Mech. Thermodyn. 33 (2020) 1023-1039.
DOI: 10.1007/s00161-020-00938-5
Google Scholar
[20]
Z. Wang, J. Zhou, J. Ren, A. Shu, Predicting Surface Residual Stress for Multi-Axis Milling of Ti-6Al-4V Titanium Alloy in Combined Simulation and Experiments, Mater. 15 (2022) 6471-6471.
DOI: 10.3390/ma15186471
Google Scholar
[21]
N.K. Sahu, A.B. Andhare, Prediction of residual stress using RSM during turning of Ti–6Al–4V with the 3D FEM assist and experiments, SN Appl. Sci. 1 (2019).
DOI: 10.1007/s42452-019-0809-5
Google Scholar
[22]
G. Li, W. Lu, S. Huang, X. Zhang, S.Ding, Analysis and prediction of residual stresses based on cutting temperature and cutting force in rough turning of Ti-6Al-4V, Heliyon. 8(11) (2022).
DOI: 10.1016/j.heliyon.2022.e11661
Google Scholar
[23]
S. Abotula, A. Shukla, R. Chona, Dynamic constitutive behavior of Hastelloy X under thermo-mechanical loads, J. Mater. Sci. 46 (2011) 4971-4979.
DOI: 10.1007/s10853-011-5414-y
Google Scholar
[24]
W.S. Lee, C.F. Lin, High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests, J. Mater. Process. Technol. 75 (1998) 127-136.
DOI: 10.1016/s0924-0136(97)00302-6
Google Scholar
[25]
T. Özel, I. Llanos, J. Soriano, P.J. Arrazola, 3d Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of Fe Software Predictions, Mach. Sci. Technol. 15 (2011) 21-46.
DOI: 10.1080/10910344.2011.557950
Google Scholar
[26]
T. Özel, M. Sima, A. Srivastava, B. Kaftanoglu, Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations, CIRP Ann. 59 (2010) 77-82.
DOI: 10.1016/j.cirp.2010.03.055
Google Scholar
[27]
R. Sievert, H.D. Noack, A. Hamann, P. Löwe, K. Singh, G. Künecke, E. Uhlmann, Simulation der Spansegmentierung beim Hochgeschwindigkeits-zerspanen unter Berücksichtigung duktiler Schädigung, Tech. Mech. Sci. J. Fundam. Appl. Eng. Mech. 23 (2003) 216-233.
DOI: 10.1002/3527605142.ch20
Google Scholar
[28]
S. Abotula, N. Heeder, R. Chona, A. Shukla, Dynamic thermo-mechanical response of Hastelloy X to shock wave loading, Exp. Mech. 54 (2014) 279-291.
DOI: 10.1007/s11340-013-9796-4
Google Scholar
[29]
M. Aghaie-Khafri, N. Golarzi, Forming behavior and workability of Hastelloy X superalloy during hot deformation, Mater. Sci. Eng. A 486 (2008) 641-647.
DOI: 10.1016/j.msea.2007.11.059
Google Scholar
[30]
L. Liu, J. Sun, W. Chen, J. Zhang, Finite element analysis of machining processes of turbine disk of Inconel 718 high-temperature wrought alloy based on the theorem of minimum potential energy, Int. J. Adv. Manuf. Technol. 88 (2017) 3357-3369.
DOI: 10.1007/s00170-016-9026-1
Google Scholar
[31]
P.J. Arrazola, A. Kortabarria, A. Madariaga, J.A. Esnaola, E. Fernandez, C. Cappellini, D. Ulutan, T. Özel, On the machining induced residual stresses in IN718 nickel-based alloy: Experiments and predictions with finite element simulation, Simul. Model. Pract. Theory 41 (2014) 87-103.
DOI: 10.1016/j.simpat.2013.11.009
Google Scholar
[32]
D. Ulutan, M. Sima, T. Özel, Prediction of machining induced surface integrity using elastic-viscoplastic simulations and temperature-dependent flow softening material models in titanium and nickel-based alloys, Adv. Mater. Res. 223 (2011) 401-410.
DOI: 10.4028/www.scientific.net/amr.223.401
Google Scholar