Influence of Cutting Parameters on Tool Temperatures and Residual Stresses in Machining Aerospace Alloys: A DEFORM 3D Simulation Approach

Article Preview

Abstract:

This study investigates the influence of cutting parameters on tool temperatures and residual stresses during the machining of aerospace alloys Inconel-718, Hastelloy-X, and Ti6Al4V. Experimental turning operations were conducted under predetermined cutting speeds, feed rates, and cutting depths, followed by residual stress measurements using X-ray diffraction (XRD). Maximum tool temperatures were recorded using a thermal camera. Additionally, numerical simulations were performed using DEFORM 3D under identical cutting conditions to validate the experimental findings. The results reveal that Hastelloy-X exhibited the highest residual stresses and cutting tool temperatures, while Ti6Al4V showed the lowest. A close agreement was observed between the experimental and simulation data, highlighting the accuracy of the DEFORM 3D model. This study provides a comprehensive analysis of Hastelloy-X, a material with limited prior research, contributing novel insights into its machining characteristics. The findings will aid in optimizing cutting parameters for improved performance and tool life in aerospace applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-28

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.B. Guo, W. Li, I.S. Jawahir, Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: a state-of-art research review and analysis, Mach. Sci. Technol. 13 (2009) 437-470.

DOI: 10.1080/10910340903454922

Google Scholar

[2] S. Saini, I.S. Ahuja, V.S. Sharma, Residual stresses, surface roughness, and tool wear in hard turning: a comprehensive review, Mater. Manuf. Process. 27 (2012) 583-598.

DOI: 10.1080/10426914.2011.585505

Google Scholar

[3] C. Liu, S. Mittal, Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact, Wear 219 (1998) 128-140.

DOI: 10.1016/s0043-1648(98)00240-3

Google Scholar

[4] Y. Matsumoto, F. Hashimoto, G. Lahoti, Surface integrity generated by precision hard turning, CIRP Ann. 48 (1999) 59-62.

DOI: 10.1016/s0007-8506(07)63131-x

Google Scholar

[5] R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, Int. J. Mach. Tools Manuf. 44 (2004) 879-887.

DOI: 10.1016/j.ijmachtools.2004.02.016

Google Scholar

[6] R.M. Arunachalam, M.A. Mannan, A.C. Spowage, Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools, Int. J. Mach. Tools Manuf. 44 (2004) 1481-1491.

DOI: 10.1016/j.ijmachtools.2004.05.005

Google Scholar

[7] J. Hua, R. Shivpuri, X. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometry, Mater. Sci. Eng. A 394 (2005) 238-248.

DOI: 10.1016/j.msea.2004.11.011

Google Scholar

[8] J. Hua, D. Umbrello, R. Shivpuri, Investigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steel, J. Mater. Process. Technol. 171 (2006) 180-187.

DOI: 10.1016/j.jmatprotec.2005.06.087

Google Scholar

[9] H. Peng, W. Tang, Y. Xing, X. Zhou, Semi-empirical prediction of turned surface residual stress for inconel 718 Grounded in Experiments and Finite Element Simulations, Mater. 14 (2021) 3937-3937.

DOI: 10.3390/ma14143937

Google Scholar

[10] H. Peng, P. Dong, X. Cheng, C. Zhang, W. Tang, Y. Xing, X. Zhou, Semi-empirical prediction of residual stress distributions ıntroduced by turning inconel 718 alloy based on lorentz function, Mater. 13 (2020) 4341-4341.

DOI: 10.3390/ma13194341

Google Scholar

[11] H. Javadi, W. Jomaa, V. Songmene, M. Brochu, P. Bocher, Inconel 718 superalloy controlled surface ıntegrity for fatigue applications produced by precision turning, Int. J. Precis. Eng. Manuf. 20 (2019) 1297-1310.

DOI: 10.1007/s12541-019-00145-6

Google Scholar

[12] Y. Hua, Z. Liu, Experimental investigation of principal residual stress and fatigue performance for turned nickel-based superalloy inconel 718, Mater. 11 (2018) 879-879.

DOI: 10.3390/ma11060879

Google Scholar

[13] M. Lavella, T. Berruti, E. Bosco, Residual stress analysis in inconel 718 milled turbine disk, Int. J. Mach. Machin. Mater. 4 (2009).

DOI: 10.1504/ijmmm.2008.023193

Google Scholar

[14] E. Soufian, R. Darabi, M. Abouridouane, A. Reis, T. Bergs, Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallization, Int. J. Adv. Manuf. Technol. 122 (2022) 601-617.

DOI: 10.1007/s00170-022-09846-1

Google Scholar

[15] R.S. Pawade, S.S. Joshi, P.K. Brahmankar, Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, Int. J. Mach. Tools Manuf. 48 (2008) 15-28.

DOI: 10.1016/j.ijmachtools.2007.08.004

Google Scholar

[16] A. Jiang, J. Zhao, P. Cui, Z. Liu, B. Wang, Effects of TiAlN Coating thickness on machined surface roughness, surface residual stresses and fatigue life in turning inconel 718, Metals 14 (2024) 940.

DOI: 10.3390/met14080940

Google Scholar

[17] V. Kant, G. Kartheek, P. Krishna, C. Sukjamsri, Residual stress evaluation using finite element modeling in turning of ti-6al-4v and its optimization using RSM, Smart Sustain. Manuf. Syst. 6 (2022) 20220009-20220009.

DOI: 10.1520/ssms20220009

Google Scholar

[18] G. Styger, R.F. Laubscher, The prediction of the turned machining induced residual stresses in Ti6Al4V: A Critical Surface Integrity Descriptor, MATEC Web Conf. 347 (2021) 00037-00037.

DOI: 10.1051/matecconf/202134700037

Google Scholar

[19] C.H. Wölfle, M. Wimmer, M. Zubair, C. Krempaszky, M. Zäh, E. Werner, Towards real-time prediction of residual stresses induced by peripheral milling of Ti–6Al–4V, Contin. Mech. Thermodyn. 33 (2020) 1023-1039.

DOI: 10.1007/s00161-020-00938-5

Google Scholar

[20] Z. Wang, J. Zhou, J. Ren, A. Shu, Predicting Surface Residual Stress for Multi-Axis Milling of Ti-6Al-4V Titanium Alloy in Combined Simulation and Experiments, Mater. 15 (2022) 6471-6471.

DOI: 10.3390/ma15186471

Google Scholar

[21] N.K. Sahu, A.B. Andhare, Prediction of residual stress using RSM during turning of Ti–6Al–4V with the 3D FEM assist and experiments, SN Appl. Sci. 1 (2019).

DOI: 10.1007/s42452-019-0809-5

Google Scholar

[22] G. Li, W. Lu, S. Huang, X. Zhang, S.Ding, Analysis and prediction of residual stresses based on cutting temperature and cutting force in rough turning of Ti-6Al-4V, Heliyon. 8(11) (2022).

DOI: 10.1016/j.heliyon.2022.e11661

Google Scholar

[23] S. Abotula, A. Shukla, R. Chona, Dynamic constitutive behavior of Hastelloy X under thermo-mechanical loads, J. Mater. Sci. 46 (2011) 4971-4979.

DOI: 10.1007/s10853-011-5414-y

Google Scholar

[24] W.S. Lee, C.F. Lin, High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests, J. Mater. Process. Technol. 75 (1998) 127-136.

DOI: 10.1016/s0924-0136(97)00302-6

Google Scholar

[25] T. Özel, I. Llanos, J. Soriano, P.J. Arrazola, 3d Finite Element Modelling of Chip Formation Process for Machining Inconel 718: Comparison of Fe Software Predictions, Mach. Sci. Technol. 15 (2011) 21-46.

DOI: 10.1080/10910344.2011.557950

Google Scholar

[26] T. Özel, M. Sima, A. Srivastava, B. Kaftanoglu, Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations, CIRP Ann. 59 (2010) 77-82.

DOI: 10.1016/j.cirp.2010.03.055

Google Scholar

[27] R. Sievert, H.D. Noack, A. Hamann, P. Löwe, K. Singh, G. Künecke, E. Uhlmann, Simulation der Spansegmentierung beim Hochgeschwindigkeits-zerspanen unter Berücksichtigung duktiler Schädigung, Tech. Mech. Sci. J. Fundam. Appl. Eng. Mech. 23 (2003) 216-233.

DOI: 10.1002/3527605142.ch20

Google Scholar

[28] S. Abotula, N. Heeder, R. Chona, A. Shukla, Dynamic thermo-mechanical response of Hastelloy X to shock wave loading, Exp. Mech. 54 (2014) 279-291.

DOI: 10.1007/s11340-013-9796-4

Google Scholar

[29] M. Aghaie-Khafri, N. Golarzi, Forming behavior and workability of Hastelloy X superalloy during hot deformation, Mater. Sci. Eng. A 486 (2008) 641-647.

DOI: 10.1016/j.msea.2007.11.059

Google Scholar

[30] L. Liu, J. Sun, W. Chen, J. Zhang, Finite element analysis of machining processes of turbine disk of Inconel 718 high-temperature wrought alloy based on the theorem of minimum potential energy, Int. J. Adv. Manuf. Technol. 88 (2017) 3357-3369.

DOI: 10.1007/s00170-016-9026-1

Google Scholar

[31] P.J. Arrazola, A. Kortabarria, A. Madariaga, J.A. Esnaola, E. Fernandez, C. Cappellini, D. Ulutan, T. Özel, On the machining induced residual stresses in IN718 nickel-based alloy: Experiments and predictions with finite element simulation, Simul. Model. Pract. Theory 41 (2014) 87-103.

DOI: 10.1016/j.simpat.2013.11.009

Google Scholar

[32] D. Ulutan, M. Sima, T. Özel, Prediction of machining induced surface integrity using elastic-viscoplastic simulations and temperature-dependent flow softening material models in titanium and nickel-based alloys, Adv. Mater. Res. 223 (2011) 401-410.

DOI: 10.4028/www.scientific.net/amr.223.401

Google Scholar