Modeling a Corona Discharge Separation of Fine Particles for Different Materials Used in Electrical Engineering

Article Preview

Abstract:

In this paper, a new method for solving Maxwell's equations associated with electrostatic separators is presented. The boundary value problem is transformed into an optimization problem by using the finite element method. Numerical simulations were carried out using Matlab software that performs equation-based multiphysics modeling for different physical processes by applying the finite element method and modified method of characteristics to a system of partial differential equations. The finite-element method is used to solve Poisson's equation, and a modified method of characteristics is used to satisfy the current continuity condition. The two methods are repeated to obtain a consistent solution to the described equations. The simulation model has been developed to determine the influence of the electrical conductor, semiconductor, and dielectric particles on the important parameters of the corona mechanism, namely the distribution of electric potential, electric field, current density, space charge density, and collection efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-90

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.B. Loeb, Fundamental Processes of Electrical Discharge in Gases. John Wiley and Sons, (1939).

Google Scholar

[2] L. Zhao, K. Adamiak, Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator, IEEE Trans. Ind. Appl. 44(2008), 683-691.

DOI: 10.1109/tia.2008.921453

Google Scholar

[3] E. Kuffel, High Voltage Engineering, Pergamon Press, Oxford, UK, (1984).

Google Scholar

[4] H. Nouri, N. Zouzou, E. Moreau, L. Dascalescu, Y. Zebboudj, Effect of Relative Humidity on Current-Voltage Characteristics of an Electrostatic Precipitator, Journal of Electrostatics, 70(2012), 20-24.

DOI: 10.1016/j.elstat.2011.08.011

Google Scholar

[5] K.R. Parker, Applied Electrostatic Precipitation. Edition Kluwer Academic Publishers, London, (1997).

Google Scholar

[6] D. Zhang, Z. Chen, F. Zhong, Z. Zhou, Experimental Study on Dust Removal Performance of Electrostatic Water Film Cyclone Dust Collector. Int. J. of Rotating Machinery. 3(2023), 1-9.

DOI: 10.1155/2023/9959052

Google Scholar

[7] X. Zhou, M. Dong, J. Mi, , S. Du, Study of grounded pole atomized corona discharge coupled with screen dust collection pole laminated dust collector. J. Chem. Eng. of Japan, 56(2023), 1-11.

DOI: 10.1080/00219592.2023.2197461

Google Scholar

[8] O. Anttalainen, , E. Lattouf, , P. Vanninen, , H. Hakulinen, , T. Kotiaho, G. Eiceman,. Computational analysis of an electrostatic separator design for removal of volatile organic compounds from indoor air. J. Air & Wast. Manag. Ass., 73(2023), 877–889.

DOI: 10.1080/10962247.2023.2265329

Google Scholar

[9] H. Fu, W. Xu, S. Li, Z. Liu, K. Yan, Convective heat transfer enhancement by corona discharge in a wire–cylinder electrostatic precipitator with the water-cooling system, J. Electros, 125(2023), 103845.

DOI: 10.1016/j.elstat.2023.103845

Google Scholar

[10] M. B. Fayyad, A. Asipuela, T. Iváncsy, The effect of the corona wire distribution with W-type of collecting plate son the characteristics of electrostatic precipitators. J. Electros, 125(2023), 103841.

DOI: 10.1016/j.elstat.2023.103841

Google Scholar

[11] F. d. A. Lima, V. G. Guerra, Influence of wire spacing and plate spacing on electrostatic precipitation of nanoparticles: An approach involving electrostatic shielding and diffusion charging. J. Particuology, 80(2023), 127-139.

DOI: 10.1016/j.partic.2022.11.018

Google Scholar

[12] Z. Long, Q. Yao, Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators, Journal of Aerosol Science, 41(2010), 702–718.

DOI: 10.1016/j.jaerosci.2010.04.005

Google Scholar

[13] M. Aissou, H. Ait said, H. Nouri, Y. Zebboudj, Analysis of current density and electric field beneath a bipolar DC wires-to-plane corona discharge in humid air, Eur. Phys. J.Appl.Phys. 61(2013), 30803.

DOI: 10.1051/epjap/2013120172

Google Scholar

[14] A. W. Yuen, Collector current density and dust collection in Wire-Plate Electrostatic Precipitators. PhD Thesis, School of Materials Science and Engineering, University of New South Wales, Australia, (2006).

Google Scholar

[15] H. Nouri, N. Zouzou, L. Dascalescu, Y. Zebboudj, Investigation of relative humidity effect on the particles velocity and collection efficiency of laboratory scale electrostatic precipitator. Process Safety and Environmental Protection, IchemE, Institution of Chemical Engineers Part A, 104 (2016), 225–232.

DOI: 10.1016/j.psep.2016.09.001

Google Scholar

[16] L. Dascalescu, R. Morar, A. Iuga, A. Samuila, V. Neamtu, Electrostatic separation of insulating and conductive particles from granular mixes. Particulate Science and Technology, 16 (1998), 25-42.

DOI: 10.1080/02726359808906782

Google Scholar

[17] L. Dascalescu, A. Mizuno, R. Tobazéon, A. Iuga, R. Morar, M. Mihailescu, A. Samuila, Charges and forces on conductive particles in roll-type corona-electrostatic separators, IEEE Trans. Ind. Appl., 31(1995), 947-956.

DOI: 10.1109/28.464503

Google Scholar

[18] S. R. Korzhenevskiy, A. A. Komarskiy, A. V. Ponomarev, A. S. Chepusov, O. D. Krasniy, Application of a nanosecond corona discharge generator for electrical separation of ores, J. Phys.: Conf. Ser., IOP Publishing (2021) V2064, P012089.

DOI: 10.1088/1742-6596/2064/1/012089

Google Scholar

[19] A. J. Medelin, C. A. J. Fletcher, R. Morrow, A pseudo-transient approach to steady state solution of electric field-space charge coupled problems, J. Electrostat, 43 (1997), 39-60.

DOI: 10.1016/s0304-3886(97)00167-8

Google Scholar

[20] Z. M. Al-Hamouz, A combined algorithm based on finite elements and a modified method of characteristics for the analysis of the corona in wire duct Electrostatic precipitators, IEEE Trans. Ind. Appl., 38 (2002), 43-49.

DOI: 10.1109/28.980343

Google Scholar

[21] M. Abdel-Salam, D. Wiitanen, Calculation of corona onset voltage for duct–type precipitators", IEEE Trans. Ind. Appl., 29 (1993), 274-280.

DOI: 10.1109/28.216532

Google Scholar

[22] K. Adamiak, P. Atten, Simulation of corona discharge in point–plane configuration, J. Electrostatics 61 (2004), 85– 98.

DOI: 10.1016/j.elstat.2004.01.021

Google Scholar

[23] H. Nouri, H. Ait Said, Y. Zebboudj, N. Zouzou, L. Dascalescu, Analysis of Electric Field and Current density in an Electrostatic Precipitator. IEEE Transactions on Dielectrics and Electrical Insulation, 23 (2016), 665- 670.

DOI: 10.1109/tdei.2015.005324

Google Scholar

[24] K. Adamiak, Adaptative approach to finite element modelling of corona fields, IEEE Transactions on industry applications, 30 (1994), 387 - 393.

DOI: 10.1109/28.287518

Google Scholar

[25] O. Molchanov, K. Krpec, J. Horák, L. Kuboňová, F. Hopan, Comparison of methods for evaluating particle charges in the electrostatic precipitation of fly-ash from small-scale solid fuel combustion. Separation and Purification Technology, 248 (2020), 117057.

DOI: 10.1016/j.seppur.2020.117057

Google Scholar

[26] H. Nouri, M. Aissou, H. Ait Said, Y. Zebboudj, Finite Element Method Investigation of Electrostatic Precipitator Performance, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, John &Wiley, 28 (2015), 138–154.

DOI: 10.1002/jnm.1992

Google Scholar

[27] K. Adamiak, P. Atten,. Numerical simulation of the 2-D gas flow modified by the action of charged fine particles in a single-wire ESP. Dielectrics and Electrical Insulation, IEEE Transactions on. 16 (2009), 608 – 614.

DOI: 10.1109/tdei.2009.5128495

Google Scholar

[28] H. Nouri, M. Aissou, Y. Zebboudj, Modeling and simulation of the effect of Pressure on the corona discharge for wire plane configuration, IEEE Transactions on Dielectrics and Electrical Insul. 20 (2013), 1547-1553.

DOI: 10.1109/tdei.2013.6633682

Google Scholar

[29] F.W. Peek, Dielectric Phenomena in High Voltage Engineering, McGraw-Hill Press, New York, (1929).

Google Scholar

[30] A. Mizuno, Electrostatic precipitation, IEEE Trans. Dielectr. Electr. Insul. 7 (2000), 615-624.

DOI: 10.1109/94.879357

Google Scholar

[31] J. P. Reynolds, L. Theodore, J. Marino, Calculating collection efficiencies for electrostatic precipitators. Journal of the Air Pollution Control Association, 25 (1975), 610-616.

DOI: 10.1080/00022470.1975.10470116

Google Scholar

[32] Z. Yang, C. Zheng, S. Liu, Y. Guo, C. Liang, X. Zhang, Y. Zhang, X. Gao, Insights into the role of particle space charge effects in particle precipitation processes in electrostatic precipitator. Powder Technology, 339 (2018), 606-614.

DOI: 10.1016/j.powtec.2018.08.056

Google Scholar