Deformation Behaviour of Semisolid A356 Alloy Slurry between Two Parallel Plates

Article Preview

Abstract:

The deformation of semisolid slurry within a mould or die is complex in the case of semisolid forming. Understanding and improving the efficiency of such a forming process requires a systematic study of the flow of semisolid slurry under deformation. This study considers the flow characteristics of semisolid A356 alloy slurry under deformation between two parallel plates. The semisolid slurry is represented here by an apparent viscosity under deformation and cooling. The process is then modelled using momentum and energy conservation equations, comprising an analytical solution to predict related flow and deformation behaviour of the slurry. The final solution involves coupling the governing equations by developing a numerical code on the FORTRAN platform. The model then predicts the distribution of temperature, solid fraction, apparent viscosity of the semisolid slurry, and stress to deform the slurry. The deformation stress found in this study has a realistic value, which is also supported by the available research. Prediction of deformation characteristics for any semisolid slurry is possible using the present model, which is simple and appropriate. This study also found that the deformation stress increases with an increase in the plate length and decreases with an increase in the slurry deformation velocity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-30

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Spencer, R. Mehrabian, and M.C. Flemings, Rheological behavior of Sn-15%Pb in the crystallization range, Metallurgical Transactions. 3 (1972) 1925-1932.

DOI: 10.1007/bf02642580

Google Scholar

[2] M.C. Flemings, R.G. Riek, and K.P. Young, Rheocasting, Materials Science and Engg. 25 (1976) 103–117.

DOI: 10.1016/0025-5416(76)90057-4

Google Scholar

[3] X.P. Zheng, W.W. Zhang, and M. Shao, Effect of Holding Time on Rheological Characteristics of the Semisolid Magnesium Alloy, Applied Mechanics and Materials. 713-715 (2015) 2663-2666.

DOI: 10.4028/www.scientific.net/amm.713-715.2663

Google Scholar

[4] Z. Chang, N. Su, Y. Wu, Q. Lan, L. Peng, and W. Ding, Semisolid rheoforming of magnesium alloys: A review, Materials & Design. 195 (2020) 108990.

DOI: 10.1016/j.matdes.2020.108990

Google Scholar

[5] S. Ji, K. Wang, and X. Dong, An overview on the process development and the formation of non-dendritic microstructure in semi-solid processing of metallic materials, Crystals. 12(8) (2022) 1044.

DOI: 10.3390/cryst12081044

Google Scholar

[6] X.P. Zheng, H.B. Li, and Z.S. Ji, Investigation of the Semisolid Rheological Characteristics of AZ91D Alloy, Applied Mechanics and Materials. 723 (2015) 742-746.

DOI: 10.4028/www.scientific.net/amm.723.742

Google Scholar

[7] G. Li, W. Qu, M. Luo, L. Cheng, C. Guo, X. Li, Z. Xu, X. Hu, D. Li, H. Lu, and Q. Zhu, Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China, Transactions of Nonferrous Metals Society China. 31 (2021) 3255−3280.

DOI: 10.1016/s1003-6326(21)65729-1

Google Scholar

[8] H. Bingli, L. Hao, Y. Jiawei, X. Hongtu, C. Yukai, H. Bin, and Z. Qi, A novel ultrasonic rolling assisted direct energy deposition method with semi-solid thixo-forming characteristics for AA6061, Journal of Materials Processing Technology. 333 (2024) 118572.

DOI: 10.1016/j.jmatprotec.2024.118572

Google Scholar

[9] C.T.W. Proni, L.C. Paula, L. Torres, and E.J. Zoqui, Evaluation of Al-5wt%Si-5wt%Zn as Raw Material for Semisolid Forming, Solid State Phenomena. 285 (2019) 339-344.

DOI: 10.4028/www.scientific.net/ssp.285.339

Google Scholar

[10] Z. Ma, H. Zhang, H. Fu, J. Fonseca, Y. Yang, M. Du, H. Zhang, Modelling flow-induced microstructural segregation in semi-solid metals, Materials & Design. 213 (2022) 110364.

DOI: 10.1016/j.matdes.2021.110364

Google Scholar

[11] O. Martin-Raya, S. Menargues, E. Martin, M.T. Baile, J. A. Picas, Rheological Behavior of the A356 Alloy in the Semisolid State at Low Shear Rates, Materials (Basel). 16(6):2280 (2023).

DOI: 10.3390/ma16062280

Google Scholar

[12] G. Xiao, J. Jiang, Y. Wang, Y. Liu, Y. Zhang, B. Guo, Z. He, and X. Xian, Microstructure and mechanical properties of 7075 aluminum alloy parts formed by semi-solid thixoextrusion, Transactions of Nonferrous Metals Society China. 33 (2023) 3235-3249.

DOI: 10.1016/s1003-6326(23)66330-7

Google Scholar

[13] J.F. Jiang, Y.Z. Liu, G.F. Xiao, and Y. Wang, Thixoforming of Semisolid Slurry with High Fraction Solid Fabricated by Partial Melting of Commerical Wrought Aluminum Alloys, Solid State Phenomena. 285 (2019) 210-218.

DOI: 10.4028/www.scientific.net/ssp.285.210

Google Scholar

[14] W. Wang, and B. Liu, Load transfer behavior in semisolid formed hypereutectic Al-Fe based alloys during tensile creep, Materials Science and Engineering: A. 914 (2024) 147098.

DOI: 10.1016/j.msea.2024.147098

Google Scholar

[15] A. Alharbi, A. Khan, I. Todd, M. Ramadan, and K. Mumtaz, Semisolid heat treatment processing window of Pb-40% Sn alloy for feedstock in the 3D printing thixo-forming process, Materials Today: Proceedings. 51(1) (2022) 403-410.

DOI: 10.1016/j.matpr.2021.05.549

Google Scholar

[16] N. Li, W. Mao, X. Geng, R. Zhang, and B. Yan, Microstructure, segregation and fracture behavior of 6061 aluminum alloy samples formed by semi-solid or traditional high pressure die casting, Materials Today: Communications. 31 (2022) 103418.

DOI: 10.1016/j.mtcomm.2022.103418

Google Scholar

[17] N. Barman, P. Kumar, and P. Dutta, Studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring, Journal of Materials Processing Technology. 209 (18-19) (2009) 5912-5923.

DOI: 10.1016/j.jmatprotec.2009.07.008

Google Scholar

[18] F. Czerwinski, Selected Aspects of Semisolid Forming Magnesium Alloys, Materials Science Forum. 539-543 (2007) 1644-1649.

DOI: 10.4028/www.scientific.net/msf.539-543.1644

Google Scholar

[19] N. Barman, and P. Dutta, Rheology of A356 alloy during solidification under stirring, Transactions of the Indian Institute of Metals. 67 (2014) 101-104.

DOI: 10.1007/s12666-013-0325-z

Google Scholar

[20] N. Barman, and P. Dutta, Studies on macrosegregation and double diffusive convection during directional solidification of binary mixture, Materials Science and Technology. 24(10) (2008) 1230-1237.

DOI: 10.1179/174328407x185901

Google Scholar

[21] S. Simlandi, N. Barman, and H. Chattopadhyay, Studies on transport phenomena during continuous casting of an Al-alloy in presence of electromagnetic stirring, Transactions of the Indian Institute of Metals. 66 (2013) 141-146.

DOI: 10.1007/s12666-012-0205-y

Google Scholar

[22] M.U. Uwaezuoke, and M.O. Oyesanya, Forced convection heat transfer behaviours of Newtonian fluid in a channel between two parallel heated plates, International Journal of Scientific & Engineering Research. 10(10) (2019) 595-610.

Google Scholar

[23] A. Bejan, Convection Heat Transfer, 4th Edition, 2013, John Wiley & Sons, Inc.

Google Scholar

[24] S. Simlandi, N. Barman, and H. Chattopadhyay, Study on rheological behavior of semisolid A356 alloy during solidification, Transactions of the Indian Institute of Metals. 65 (2012) 809-814.

DOI: 10.1007/s12666-012-0204-z

Google Scholar

[25] L.J. Guo, S.M. Xing, and P.W. Bao, A Study on Bubbles in Semisolid Alloys, Solid State Phenomena. 217-218 (2014) 302-311.

DOI: 10.4028/www.scientific.net/ssp.217-218.302

Google Scholar