[1]
Stewart, C., Konstantinov, K., McKinnon, S., Guatelli, S., Lerch, M., Rosenfeld, A., Tehei, M. and Corde, S., 2016. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 32(11), pp.1444-1452.
DOI: 10.1016/j.ejmp.2016.10.015
Google Scholar
[2]
La, J., Huang, Y., Luo, G., Lai, J., Liu, C. and Chu, G., 2013. Synthesis of bismuth oxide nanoparticles by solution combustion method. Particulate Science and Technology, 31(3), pp.287-290.
DOI: 10.1080/02726351.2012.727525
Google Scholar
[3]
Zhou P., Lv J., Xu H., Wang X., Sui X., Zhong Y., Wang B., Chen Z., Feng X., Zhang L., Mao Z., (2019), Functionalization of Cotton Fabric with Bismuth Oxyiodide Nanosheets: Applications for Photodegrading Organic Pollutants. UV Shielding and Self-Cleaning. Cellulose., 26(4): 2873–2884
DOI: 10.1007/s10570-019-02281-8
Google Scholar
[4]
Pavlenko V.I., Cherkashina N.I., Yastrebinsky R.N., Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites, Heliyon., 5(5): e01703 (2019).
DOI: 10.1016/j.heliyon.2019.e01703
Google Scholar
[5]
Niveditha, C.V., Fatima, M.J. and Sindhu, S., 2016. Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. Journal of The Electrochemical Society, 163(6), p.H426.
DOI: 10.1149/2.0971606jes
Google Scholar
[6]
Soam, A., Kumar, R. and Singh, M., 2020. Electrophoretically deposited bismuth iron oxide nanoparticles film for supercapacitor application. Russian Journal of Electrochemistry, 56, pp.1037-1042.
DOI: 10.1134/s1023193520120241
Google Scholar
[7]
Goncharova, A.S., Napolskii, K.S., Skryabina, O.V., Stolyarov, V.S., Levin, E.E., Egorov, S.V., Eliseev, A.A., Kasumov, Y.A., Ryazanov, V.V. and Tsirlina, G.A., 2020. Bismuth nanowires: electrochemical fabrication, structural features, and transport properties. Physical Chemistry Chemical Physics, 22(26), pp.14953-14964..
DOI: 10.1039/d0cp01111h
Google Scholar
[8]
Roselin, A.A., Anandhan, N., Gopu, G., Doss, I.J.P., Ganesan, K.P., Selvam, R.P., Marimuthu, T. and Sivakumar, G., 2019. Electrochemical sensor for the detection of lead ions of B-site-doped bismuth titanate perovskite thin film. Applied Physics A, 125, pp.1-15.
DOI: 10.1007/s00339-019-2963-4
Google Scholar
[9]
Gupta, S., Singh, R., Agarwal, G., Ray, K., Kothari, S.L., Verma, A.S., Saraswat, V.K., Awasthi, K. and Kumar, M., 2018. Electrochemical hydrogen evolution and storage studies on bismuth nano hexagons. International Journal of Hydrogen Energy, 43(47), pp.21642-21648.
DOI: 10.1016/j.ijhydene.2018.03.207
Google Scholar
[10]
Lghazi, Y., Bimaghra, I., Bachiri, A., Elmerzouki, K., Youbi, B. and Lasri, H., 2018. Investigation of the nucleation kinetics of Bi and α-Bi2O3 during electro-deposition on substrate ITO. Int. J. Eng. Technol, 7(4.32), pp.21-24.
DOI: 10.14419/ijet.v7i4.32.23238
Google Scholar
[11]
Wang, H.W., Hu, Z.A., Chang, Y.Q., Chen, Y.L., Lei, Z.Q., Zhang, Z.Y. and Yang, Y.Y., 2010. Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochimica Acta, 55(28), pp.8974-8980.
DOI: 10.1016/j.electacta.2010.08.048
Google Scholar
[12]
Ng, C.H., Lim, H.N., Hayase, S., Zainal, Z., Shafie, S. and Huang, N.M., 2018. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6), pp.2146-2154.
DOI: 10.1021/acs.iecr.7b04980
Google Scholar
[13]
Kayani, Z.N., Ali, M.G., Waseem, S., Bashir, Z., Riaz, S. and Naseem, S., 2024. Optimization of nanostructured Zr doped bismuth oxide (Bi2O4) thin films for physical and biological properties. Ceramics International, 50(4), pp.6854-6869
DOI: 10.1016/j.ceramint.2023.12.030
Google Scholar
[14]
Agapescu, C., Cojocaru, A., Cotarta, A. and Visan, T., 2013. Electrodeposition of bismuth, tellurium, and bismuth telluride thin films from choline chloride–oxalic acid ionic liquid. Journal of Applied Electrochemistry, 43, pp.309-321.
DOI: 10.1007/s10800-012-0487-0
Google Scholar
[15]
Ahila, M., Malligavathy, M., Subramanian, E. and Padiyan, D.P., 2016. Controllable synthesis of α and β-Bi2O3 through anodization of thermally evaporated bismuth and its characterization. Solid State Ionics, 298, pp.23-34.
DOI: 10.1016/j.ssi.2016.10.017
Google Scholar
[16]
Lghazi, Y., Bimaghra, I., Bachiri, A., Elmerzouki, K., Youbi, B. and Lasri, H., 2018. Investigation of the nucleation kinetics of Bi and α-Bi2O3 during electro-deposition on substrate ITO. Int. J. Eng. Technol, 7(4.32), pp.21-24.
DOI: 10.14419/ijet.v7i4.32.23238
Google Scholar
[17]
Kayani, Z.N., Ali, M.G., Waseem, S., Bashir, Z., Riaz, S. and Naseem, S., 2024. Optimization of nanostructured Zr doped bismuth oxide (Bi2O4) thin films for physical and biological properties. Ceramics International, 50(4), pp.6854-6869.
DOI: 10.1016/j.ceramint.2023.12.030
Google Scholar
[18]
Ng, C.H., Lim, H.N., Hayase, S., Zainal, Z., Shafie, S. and Huang, N.M., 2018. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6), pp.2146-2154.
DOI: 10.1021/acs.iecr.7b04980
Google Scholar
[19]
de Lima, C.A. and Spinelli, A., 2013. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochimica Acta, 107, pp.542-548.
DOI: 10.1016/j.electacta.2013.05.141
Google Scholar
[20]
Li, L., Zhang, X., Zhang, Z., Zhang, M., Cong, L., Pan, Y. and Lin, S., 2016. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors. Journal of materials chemistry A, 4(42), pp.16635-16644.
DOI: 10.1039/c6ta06755g
Google Scholar
[21]
Roselin, A.A., Anandhan, N., Gopu, G., Doss, I.J.P., Ganesan, K.P., Selvam, R.P., Marimuthu, T. and Sivakumar, G., 2019. Electrochemical sensor for the detection of lead ions of B-site-doped bismuth titanate perovskite thin film. Applied Physics A, 125, pp.1-15.
DOI: 10.1007/s00339-019-2963-4
Google Scholar
[22]
Li, X., Zhang, L., Dong, H., Xia, T. and Huang, Z., 2015. Bismuth oxide coated amorphous manganese dioxide for electrochemical capacitors. Solid State Sciences, 43, pp.46-52.
DOI: 10.1016/j.solidstatesciences.2015.03.019
Google Scholar
[23]
Ng, C.H., Lim, H.N., Hayase, S., Zainal, Z., Shafie, S. and Huang, N.M., 2018. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6), pp.2146-2154..
DOI: 10.1021/acs.iecr.7b04980
Google Scholar
[24]
Shinde, N.M., Xia, Q.X., Yun, J.M., Mane, R.S. and Kim, K.H., 2018. Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS applied materials & interfaces, 10(13), pp.11037-11047.
DOI: 10.1021/acsami.8b00260
Google Scholar
[25]
Suryavanshi, V.B., Bobade, R.G., Lokh, B.J. and Ambare, R.C., 2023. Electro-synthesized bismuth oxide nanomaterials on flexible substrate electrode for supercapacitor application. ES Energy & Environment, 21(2), p.944.
Google Scholar
[26]
Raut, S.S., Bisen, O. and Sankapal, B.R., 2017. Synthesis of interconnected needle-like Bi2O3 using successive ionic layer adsorption and reaction towards supercapacitor application. Ionics, 23, pp.1831-1837.
DOI: 10.1007/s11581-017-1994-0
Google Scholar
[27]
Qiu, Y., Fan, H., Chang, X., Dang, H., Luo, Q. and Cheng, Z., 2018. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Applied Surface Science, 434, pp.16-20..
DOI: 10.1016/j.apsusc.2017.10.171
Google Scholar
[28]
Chitrada, K.C. and Raja, K.S., 2014. Nanoporous anodic bismuth oxide for electrochemical energy storage. ECS Transactions, 61(18), p.55.
DOI: 10.1149/06118.0055ecst
Google Scholar
[29]
Jovanovski, V., Hočevar, S.B. and Ogorevc, B., 2017. Bismuth electrodes in contemporary electroanalysis. Current Opinion in Electrochemistry, 3(1), pp.114-122..
DOI: 10.1016/j.coelec.2017.07.008
Google Scholar
[30]
Ambare, R.C., Shinde, P., Nakate, U.T., Lokhande, B.J. and Mane, R.S., 2018. Sprayed bismuth oxide interconnected nanoplate supercapacitor electrode materials. Applied Surface Science, 453, pp.214-219.
DOI: 10.1016/j.apsusc.2018.05.090
Google Scholar
[31]
Chang, C., Yang, S., Liu, H., Qu, J., Qi, J., Dai, J., Jin, W., Huang, T., Xia, X., Wang, C. and Chen, Y., 2024. Revealing electrochemical behavior for high-quality and efficient bismuth deposition. Electrochimica Acta, 487, p.144160..
DOI: 10.1016/j.electacta.2024.144160
Google Scholar
[32]
Sinha, G.N., Subramanyam, P., Sivaramakrishna, V. and Subrahmanyam, C., 2021. Electrodeposited copper bismuth oxide as a low-cost, non-enzymatic electrochemical sensor for sensitive detection of uric acid and hydrogen peroxide. Inorganic Chemistry Communications, 129, p.108627.
DOI: 10.1016/j.inoche.2021.108627
Google Scholar
[33]
Bavani, T., Madhavan, J., Prasad, S., AlSalhi, M.S. and AlJaafreh, M.J., 2021. A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity. Environmental Pollution, 269, p.116067..
DOI: 10.1016/j.envpol.2020.116067
Google Scholar
[34]
Singh, A.P., Kodan, N., Dey, A., Krishnamurthy, S. and Mehta, B.R., 2015. Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films. international journal of hydrogen energy, 40(12), pp.4311-4319.
DOI: 10.1016/j.ijhydene.2015.01.085
Google Scholar
[35]
Ahmed, A.O., Samer, B.S., Nakate, U.T., Jadhav, V.V. and Mane, R.S., 2020. Electrodeposited spruce leaf-like structured copper bismuth oxide electrode for supercapacitor application. Microelectronic Engineering, 229, p.111359.
DOI: 10.1016/j.mee.2020.111359
Google Scholar
[36]
Youbi, B., Lghazi, Y., El Bachiri, A., Himi, M.A., Elibrizy, O. and Bimaghra, I., 2020. Investigation of nucleation and growth mechanism of bismuth electrodeposited on ITO substrate in nitric acid medium. Materials Today: Proceedings, 22, pp.6-11.
DOI: 10.1016/j.matpr.2019.08.055
Google Scholar