Electrochemical Study on Fluorine Doped Bi2O3 films Deposited by a Sol-Gel Spin Coating Technique to Evaluate Energy Efficiency

Article Preview

Abstract:

It has been demonstrated that thin films of fluorine-doped Bi2O3 can be prepared using sol-gel spin coating. An X-ray diffraction (XRD) and energy dispersive analysis were used to examine samples. Using a sol-gel spin-coating technique, different electrolytes and sweep rates were used in the study to characterize fluorine-doped Bi2O3 films. In the results of the studies, it was extensively examined whether these films could be used in the fabrication of electrochromic devices. The enhanced properties of fluorine doped samples are due to their increased separation efficiency and strong oxidation potential. For two hours, the samples were exposed to temperatures ranging from 350 °C to 450 °C. F:Bi2O3 films have been the subject of an intercalation and deintercalation investigation. Therefore, H2SO4 and KCl are used to intercalate H+ and K+ ions in PC electrolytes. Sharp transmittance peaks at the band's edge in a spectrum with good crystallinity signify interfering patterns. Band assignment 3482 cm-1, stretching vibration of carbohydrate, C-OH, 2432 cm-1 asymmetric stretching vibration, 1625 cm-1 unconjugated C=O stretching vibration, and 1383 cm-1 bending vibration of C-H are among the numerous assignments in Fourier transform infrared spectroscopy. Additionally, 1101 cm-1 are vibrations of hydroxyl groups and 625 cm-1 are metallic bond vibrations of F:Bi2O3. The surface roughness of F:Bi2O3 films was found to have significantly improved. It is probable that a sol-gel spin coating process at 200 °C produced dense, irregularly shaped Bi2O3 grains. The thermodynamic characteristics of the corrosion process for Bi in concentrated sulfuric acid solution were studied. These parameters were Ea (activation energy), H (enthalpy change), and S (entropy change).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-16

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Stewart, C., Konstantinov, K., McKinnon, S., Guatelli, S., Lerch, M., Rosenfeld, A., Tehei, M. and Corde, S., 2016. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Physica Medica, 32(11), pp.1444-1452.

DOI: 10.1016/j.ejmp.2016.10.015

Google Scholar

[2] La, J., Huang, Y., Luo, G., Lai, J., Liu, C. and Chu, G., 2013. Synthesis of bismuth oxide nanoparticles by solution combustion method. Particulate Science and Technology, 31(3), pp.287-290.

DOI: 10.1080/02726351.2012.727525

Google Scholar

[3] Zhou P., Lv J., Xu H., Wang X., Sui X., Zhong Y., Wang B., Chen Z., Feng X., Zhang L., Mao Z., (2019), Functionalization of Cotton Fabric with Bismuth Oxyiodide Nanosheets: Applications for Photodegrading Organic Pollutants. UV Shielding and Self-Cleaning. Cellulose., 26(4): 2873–2884

DOI: 10.1007/s10570-019-02281-8

Google Scholar

[4] Pavlenko V.I., Cherkashina N.I., Yastrebinsky R.N., Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites, Heliyon., 5(5): e01703 (2019).

DOI: 10.1016/j.heliyon.2019.e01703

Google Scholar

[5] Niveditha, C.V., Fatima, M.J. and Sindhu, S., 2016. Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. Journal of The Electrochemical Society, 163(6), p.H426.

DOI: 10.1149/2.0971606jes

Google Scholar

[6] Soam, A., Kumar, R. and Singh, M., 2020. Electrophoretically deposited bismuth iron oxide nanoparticles film for supercapacitor application. Russian Journal of Electrochemistry, 56, pp.1037-1042.

DOI: 10.1134/s1023193520120241

Google Scholar

[7] Goncharova, A.S., Napolskii, K.S., Skryabina, O.V., Stolyarov, V.S., Levin, E.E., Egorov, S.V., Eliseev, A.A., Kasumov, Y.A., Ryazanov, V.V. and Tsirlina, G.A., 2020. Bismuth nanowires: electrochemical fabrication, structural features, and transport properties. Physical Chemistry Chemical Physics, 22(26), pp.14953-14964..

DOI: 10.1039/d0cp01111h

Google Scholar

[8] Roselin, A.A., Anandhan, N., Gopu, G., Doss, I.J.P., Ganesan, K.P., Selvam, R.P., Marimuthu, T. and Sivakumar, G., 2019. Electrochemical sensor for the detection of lead ions of B-site-doped bismuth titanate perovskite thin film. Applied Physics A, 125, pp.1-15.

DOI: 10.1007/s00339-019-2963-4

Google Scholar

[9] Gupta, S., Singh, R., Agarwal, G., Ray, K., Kothari, S.L., Verma, A.S., Saraswat, V.K., Awasthi, K. and Kumar, M., 2018. Electrochemical hydrogen evolution and storage studies on bismuth nano hexagons. International Journal of Hydrogen Energy, 43(47), pp.21642-21648.

DOI: 10.1016/j.ijhydene.2018.03.207

Google Scholar

[10] Lghazi, Y., Bimaghra, I., Bachiri, A., Elmerzouki, K., Youbi, B. and Lasri, H., 2018. Investigation of the nucleation kinetics of Bi and α-Bi2O3 during electro-deposition on substrate ITO. Int. J. Eng. Technol, 7(4.32), pp.21-24.

DOI: 10.14419/ijet.v7i4.32.23238

Google Scholar

[11] Wang, H.W., Hu, Z.A., Chang, Y.Q., Chen, Y.L., Lei, Z.Q., Zhang, Z.Y. and Yang, Y.Y., 2010. Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochimica Acta, 55(28), pp.8974-8980.

DOI: 10.1016/j.electacta.2010.08.048

Google Scholar

[12] Ng, C.H., Lim, H.N., Hayase, S., Zainal, Z., Shafie, S. and Huang, N.M., 2018. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6), pp.2146-2154.

DOI: 10.1021/acs.iecr.7b04980

Google Scholar

[13] Kayani, Z.N., Ali, M.G., Waseem, S., Bashir, Z., Riaz, S. and Naseem, S., 2024. Optimization of nanostructured Zr doped bismuth oxide (Bi2O4) thin films for physical and biological properties. Ceramics International, 50(4), pp.6854-6869

DOI: 10.1016/j.ceramint.2023.12.030

Google Scholar

[14] Agapescu, C., Cojocaru, A., Cotarta, A. and Visan, T., 2013. Electrodeposition of bismuth, tellurium, and bismuth telluride thin films from choline chloride–oxalic acid ionic liquid. Journal of Applied Electrochemistry, 43, pp.309-321.

DOI: 10.1007/s10800-012-0487-0

Google Scholar

[15] Ahila, M., Malligavathy, M., Subramanian, E. and Padiyan, D.P., 2016. Controllable synthesis of α and β-Bi2O3 through anodization of thermally evaporated bismuth and its characterization. Solid State Ionics, 298, pp.23-34.

DOI: 10.1016/j.ssi.2016.10.017

Google Scholar

[16] Lghazi, Y., Bimaghra, I., Bachiri, A., Elmerzouki, K., Youbi, B. and Lasri, H., 2018. Investigation of the nucleation kinetics of Bi and α-Bi2O3 during electro-deposition on substrate ITO. Int. J. Eng. Technol, 7(4.32), pp.21-24.

DOI: 10.14419/ijet.v7i4.32.23238

Google Scholar

[17] Kayani, Z.N., Ali, M.G., Waseem, S., Bashir, Z., Riaz, S. and Naseem, S., 2024. Optimization of nanostructured Zr doped bismuth oxide (Bi2O4) thin films for physical and biological properties. Ceramics International, 50(4), pp.6854-6869.

DOI: 10.1016/j.ceramint.2023.12.030

Google Scholar

[18] Ng, C.H., Lim, H.N., Hayase, S., Zainal, Z., Shafie, S. and Huang, N.M., 2018. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6), pp.2146-2154.

DOI: 10.1021/acs.iecr.7b04980

Google Scholar

[19] de Lima, C.A. and Spinelli, A., 2013. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochimica Acta, 107, pp.542-548.

DOI: 10.1016/j.electacta.2013.05.141

Google Scholar

[20] Li, L., Zhang, X., Zhang, Z., Zhang, M., Cong, L., Pan, Y. and Lin, S., 2016. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors. Journal of materials chemistry A, 4(42), pp.16635-16644.

DOI: 10.1039/c6ta06755g

Google Scholar

[21] Roselin, A.A., Anandhan, N., Gopu, G., Doss, I.J.P., Ganesan, K.P., Selvam, R.P., Marimuthu, T. and Sivakumar, G., 2019. Electrochemical sensor for the detection of lead ions of B-site-doped bismuth titanate perovskite thin film. Applied Physics A, 125, pp.1-15.

DOI: 10.1007/s00339-019-2963-4

Google Scholar

[22] Li, X., Zhang, L., Dong, H., Xia, T. and Huang, Z., 2015. Bismuth oxide coated amorphous manganese dioxide for electrochemical capacitors. Solid State Sciences, 43, pp.46-52.

DOI: 10.1016/j.solidstatesciences.2015.03.019

Google Scholar

[23] Ng, C.H., Lim, H.N., Hayase, S., Zainal, Z., Shafie, S. and Huang, N.M., 2018. Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6), pp.2146-2154..

DOI: 10.1021/acs.iecr.7b04980

Google Scholar

[24] Shinde, N.M., Xia, Q.X., Yun, J.M., Mane, R.S. and Kim, K.H., 2018. Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS applied materials & interfaces, 10(13), pp.11037-11047.

DOI: 10.1021/acsami.8b00260

Google Scholar

[25] Suryavanshi, V.B., Bobade, R.G., Lokh, B.J. and Ambare, R.C., 2023. Electro-synthesized bismuth oxide nanomaterials on flexible substrate electrode for supercapacitor application. ES Energy & Environment, 21(2), p.944.

Google Scholar

[26] Raut, S.S., Bisen, O. and Sankapal, B.R., 2017. Synthesis of interconnected needle-like Bi2O3 using successive ionic layer adsorption and reaction towards supercapacitor application. Ionics, 23, pp.1831-1837.

DOI: 10.1007/s11581-017-1994-0

Google Scholar

[27] Qiu, Y., Fan, H., Chang, X., Dang, H., Luo, Q. and Cheng, Z., 2018. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Applied Surface Science, 434, pp.16-20..

DOI: 10.1016/j.apsusc.2017.10.171

Google Scholar

[28] Chitrada, K.C. and Raja, K.S., 2014. Nanoporous anodic bismuth oxide for electrochemical energy storage. ECS Transactions, 61(18), p.55.

DOI: 10.1149/06118.0055ecst

Google Scholar

[29] Jovanovski, V., Hočevar, S.B. and Ogorevc, B., 2017. Bismuth electrodes in contemporary electroanalysis. Current Opinion in Electrochemistry, 3(1), pp.114-122..

DOI: 10.1016/j.coelec.2017.07.008

Google Scholar

[30] Ambare, R.C., Shinde, P., Nakate, U.T., Lokhande, B.J. and Mane, R.S., 2018. Sprayed bismuth oxide interconnected nanoplate supercapacitor electrode materials. Applied Surface Science, 453, pp.214-219.

DOI: 10.1016/j.apsusc.2018.05.090

Google Scholar

[31] Chang, C., Yang, S., Liu, H., Qu, J., Qi, J., Dai, J., Jin, W., Huang, T., Xia, X., Wang, C. and Chen, Y., 2024. Revealing electrochemical behavior for high-quality and efficient bismuth deposition. Electrochimica Acta, 487, p.144160..

DOI: 10.1016/j.electacta.2024.144160

Google Scholar

[32] Sinha, G.N., Subramanyam, P., Sivaramakrishna, V. and Subrahmanyam, C., 2021. Electrodeposited copper bismuth oxide as a low-cost, non-enzymatic electrochemical sensor for sensitive detection of uric acid and hydrogen peroxide. Inorganic Chemistry Communications, 129, p.108627.

DOI: 10.1016/j.inoche.2021.108627

Google Scholar

[33] Bavani, T., Madhavan, J., Prasad, S., AlSalhi, M.S. and AlJaafreh, M.J., 2021. A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity. Environmental Pollution, 269, p.116067..

DOI: 10.1016/j.envpol.2020.116067

Google Scholar

[34] Singh, A.P., Kodan, N., Dey, A., Krishnamurthy, S. and Mehta, B.R., 2015. Improvement in the structural, optical, electronic and photoelectrochemical properties of hydrogen treated bismuth vanadate thin films. international journal of hydrogen energy, 40(12), pp.4311-4319.

DOI: 10.1016/j.ijhydene.2015.01.085

Google Scholar

[35] Ahmed, A.O., Samer, B.S., Nakate, U.T., Jadhav, V.V. and Mane, R.S., 2020. Electrodeposited spruce leaf-like structured copper bismuth oxide electrode for supercapacitor application. Microelectronic Engineering, 229, p.111359.

DOI: 10.1016/j.mee.2020.111359

Google Scholar

[36] Youbi, B., Lghazi, Y., El Bachiri, A., Himi, M.A., Elibrizy, O. and Bimaghra, I., 2020. Investigation of nucleation and growth mechanism of bismuth electrodeposited on ITO substrate in nitric acid medium. Materials Today: Proceedings, 22, pp.6-11.

DOI: 10.1016/j.matpr.2019.08.055

Google Scholar