[1]
S.P. Lloyd, Least squares quantization in pcm, IEEE Trans. Inf. Theory 28 (2) (1982) 129-137.
DOI: 10.1109/tit.1982.1056489
Google Scholar
[2]
D. Pollard, Quantization and the method of k-means, IEEE Trans. Inf. Theory 28 (2) (1982) 199-205.
Google Scholar
[3]
C. Chinrungrueng, C.H. Séquin, Optimal adaptive k -means algorithm with dynamic adjustment of learning rate, IEEE Trans. Neural Network 6 (1995) 157-169.
DOI: 10.1109/72.363440
Google Scholar
[4]
T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybern. 43 (1982) 59-69.
DOI: 10.1007/bf00337288
Google Scholar
[5]
T. Kohonen, The self-organizing map, Proc. IEEE 78 (1990) 1464–1480.
Google Scholar
[6]
E. de Bodt, M. Cottrell, P. Letremy, M. Verleysen, On the use of self-organizing maps to accelerate vector quantization, Neurocomputing 56 (2004) 187-203.
DOI: 10.1016/j.neucom.2003.09.009
Google Scholar
[7]
M.M. Campos, G.A. Carpenter, S-TREE: self-organizing trees for data clustering and online vector quantization, Neural Networks 14 (2001) 505-525.
DOI: 10.1016/s0893-6080(01)00020-x
Google Scholar
[8]
J.A. Lee, M. Verleysen, Self-organizing maps with recursive neighborhood adaptation, Neural Networks 15 (2002) 993-1003.
DOI: 10.1016/s0893-6080(02)00073-4
Google Scholar
[9]
E. Yair, K. Zeger, A. Gersho, Competitive learning and soft competition for vector quantizer design, IEEE Trans. Signal Process 40 (1992) 294-309.
DOI: 10.1109/78.124940
Google Scholar
[10]
H. Ritter, K. Schulten, On the stationary state of Kohonen's self-organizing sensory mapping, Biol. Cybern. 54 (1986) 99-106.
DOI: 10.1007/bf00320480
Google Scholar
[11]
Z.P. Lo, B. Bavarian, On the rate of convergence in topology preserving neural networks, Biol. Cybern. 65 (1991) 55-63.
DOI: 10.1007/bf00197290
Google Scholar
[12]
D.Q. Zhang, S.C. Chen, A novel kernelized fuzzy c-means algorithm with application in medical image segmentation, Artificial Intelligence in Medicine. 32 (2004) 37-50.
DOI: 10.1016/j.artmed.2004.01.012
Google Scholar
[13]
D.W. Kim, K.Y. Lee, D. Lee and K.H. Lee, A kernel-based subtractive clustering method, Pattern Recognition Letters 26 (2005) pp.879-891.
DOI: 10.1016/j.patrec.2004.10.001
Google Scholar
[14]
E.A. Zanaty, S. Aljahdali and N. Debnath, A kernelized fuzzy c-means algorithm for automatic magnetic resonance image segmentation, Journal of Computational Methods in Science and Engineering 9 Supplement 2 (2009) 123-136.
DOI: 10.3233/jcm-2009-0241
Google Scholar
[15]
M. Girolami, Mercer kernel based clustering in feature space, IEEE Trans. Neural Networks 13 (2002) 780-784.
DOI: 10.1109/tnn.2002.1000150
Google Scholar
[16]
A. Likas, N. Vlassis and J.J. Verbeek, The global k-means clustering algorithm, Pattern Recognition 36 (2003) 451-461.
DOI: 10.1016/s0031-3203(02)00060-2
Google Scholar
[17]
B. Scholkopf, A. Smola and K. -R. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, Neural Computation 10 (1998) pp.1299-1319.
DOI: 10.1162/089976698300017467
Google Scholar
[18]
I.S. Dhillon, Y. Guan and B. Kulis, Weighted graph cuts without eigenvectors: a multilevel approach, IEEE Trans. Pattern Analysis and Machine Intelligence 29 (2007) 1944-(1957).
DOI: 10.1109/tpami.2007.1115
Google Scholar
[19]
D.W. Kim, K. Y Lee, D. Lee and K.H. Lee, Evaluation of performance of clustering algorithms in kernel-induced feature space, Pattern Recognition 38 (2005) 607-611.
DOI: 10.1016/j.patcog.2004.09.006
Google Scholar
[20]
J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Analysis and Machine Intelligence 22 (2002) 888-905.
DOI: 10.1109/34.868688
Google Scholar