Influence of Material Property Variability on the Thickness in Sheet Metal Subjected to the Hydraulic Bulging

Article Preview

Abstract:

In the sheet metal forming processes, the inherent unavoidable noise in material property, which can vary inside and between batches as well as between suppliers, constitutes an important source of uncertainty which could result in rejection of some formed parts. In the process design phase, a successful tool for the sensitivity analysis proved to be the finite element codes, in which case the material parameters are used as input into the yield criterion. This paper investigates the thickness sensitivity due to the noise in material property using the finite element simulation of hydraulic bulge test. The BBC 2005 yield criterion with eight constitutive parameters, which is implemented in the commercially finite element code AutoForm has been used in this study.

You have full access to the following eBook

Info:

[1] V. Karthik, R.J. Comstock, D.L. Hershberger, R.H. Wagoner, Variability of sheet formability and formability testing, J. Mat. Process Tech. 121 (2002) 350-362.

DOI: 10.1016/s0924-0136(01)01219-5

Google Scholar

[2] L. Paraianu, I. Bichis, D. Banabic, Variability analysis of the mechanical parameters in order to determine the forming limit band, AIP Conf. Proc. 1353 (2011) 1511-1516.

DOI: 10.1063/1.3589731

Google Scholar

[3] D. Banabic, M. Vos, Modelling of the forming limit band - a new method to increase the robustness in the simulation of sheet metal forming processes, Annals of CIRP. 56 (2007) 249-252.

DOI: 10.1016/j.cirp.2007.05.058

Google Scholar

[4] L. Paraianu, D.S. Comsa, D. Banabic, Sensitivity analysis of the mechanical parameters of the sheet metals influencing the forming limit curves, in: 3rd Int. Conf. Eng. Optim., Rio de Janeiro (2012).

Google Scholar

[5] T. de Souza, B. Rolfe, Multivariate modelling of variability in sheet metal forming, J. Mat. Process. Tech. 203 Issues 1–3 (2008) 1-12.

DOI: 10.1016/j.jmatprotec.2007.09.075

Google Scholar

[6] L. Marretta, R. Di Lorenzo, Influence of material properties variability on springback and thinning in sheet stamping processes: a stochastic analysis, Int. J. Adv. Manuf. Technol. 51 (2010) 117–134.

DOI: 10.1007/s00170-010-2624-4

Google Scholar

[7] P. Sugar, J. Sugarova, L. Morovič, P. Zemko, Analysis of dimensional accuracy of spun parts by Taguchi approach, Applied Mechanics and Materials. 217-219 (2012) 2423-2426.

DOI: 10.4028/www.scientific.net/amm.217-219.2423

Google Scholar

[8] V. Gödel, C. Annen, M. Merklein, Material modelling for stochastic simulation, in: R. Kolleck (Ed. ), Proc. 50th Conference of IDDRG 2010 Graz. Verlag der Technischen Universität Graz. (2010) 687-696.

Google Scholar

[9] E. Atzema, M. Abspoel, P. Kömmelt, M. Lambriks, Towards robust simulations in sheet metal forming, International Journal of Material Forming. 2 (2009) 351-354.

DOI: 10.1007/s12289-009-0534-5

Google Scholar

[10] D. Banabic, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation, D. Banabic (Ed. ), Springer, Berlin-Heidelberg, (2010).

DOI: 10.1007/978-3-540-88113-1_4

Google Scholar

[11] L. Lăzărescu, I. Nicodim, I. Ciobanu, D. S. Comşa, D. Banabic, Determination of material parameters of sheet metals using the hydraulic bulge test, Acta Metallurgica Slovaca, Vol. 19, No. 1, (2013) 4-12.

DOI: 10.12776/ams.v19i1.81

Google Scholar

[12] ARAMIS V6. 1. 1-7 User Manual Software, GOM GmbH, Braunschweig (2009).

Google Scholar

[13] D. Banabic, D. S. Comşa, M. Sester, M. Selig, W. Kubli, K. Mattiasson, M. Sigvant, Influence of constitutive equations on the accuracy of prediction in sheet metal forming simulation, in: P. Hora (Ed. ), Numisheet 2008, Interlaken (2008) 37–42.

Google Scholar

[14] D. Banabic, M. Sester, Influence of Material Models on the Accuracy of the Sheet Forming Simulation, Mater. Manuf. Process. 27 (2012) 304–308.

Google Scholar

[15] AutoForm 4. 4 Software Manual, AutoForm Engineering GmbH, Zurich (2010).

Google Scholar