The Range Values for the Design Parameters of Nanoengineered Concrete Components. Characteristics, Properties, Amounts and Effects on the Concrete Behaviour

Article Preview

Abstract:

The nanometric scale researches results can be found, in present, in every industry domains, due to the effects of the new products, obtained on the basis of this researches. In the concrete industry, the research goal at this level is to obtain, finally, a material with new features, whose structural behavior to be considerably better than of the current one. Basically, it aims to achieve, using nanotechnologies, a new structural material for constructions, starting from the current concrete advantages (good compressive strength, durability, etc.), eliminating the disadvantages (low tensile resistance, cracks, etc.), and controlling, in the same time, the costs. Thus, in this paper are presented the required parameters in order to obtain this kind of material, by highlighting the nanocomponents characteristics and the quantities that are used to achieve the expected quality requirements. The real time influence of these nanocomponents on the quality of the studied material can be observed using a dedicated software, specially developed for this purpose.

You have full access to the following eBook

Info:

Periodical:

Pages:

277-284

Citation:

Online since:

June 2013

Export:

Share:

Citation:

[1] A.M. Neville, Properties of Concrete (4th ed. ), Prentice Hall/Pearson, Harlow, U.K. (2000).

Google Scholar

[2] A. Dunster, Silica fume in concrete, Information paper n. IP 5/09, IHS BRE Press, Garston, U.K. (2009).

Google Scholar

[3] S. Sakka, H. Kosuko, Handbook of sol-gel science and technology, Volume I: Solgel Processing, Kluwer Academic Publisher, New York, USA (2000), 9-10.

Google Scholar

[4] M. Estevez, S. Vargas, V.M. Castaño, R. Rodríguez, Silica nano-particles produced by worms through a bio-digestion process of rice husk, Journal of Non-Crystalline Solids 355 (2009), 844–850.

DOI: 10.1016/j.jnoncrysol.2009.04.011

Google Scholar

[5] D.J. Lieftink, The preparation and characterization of silica from acid treatment of olivine, Ph.D. Thesis (1997), 175, Utrecht University, The Netherlands.

Google Scholar

[6] S. Sakka, H. Kosuko, Handbook of sol-gel science and technology, volume I: Solgel Processing, Kluwer Academic Publisher, New York, USA (2000), pp.9-10.

Google Scholar

[7] Y. Qing, Z. Zenan, K. Deyu, Ch. Rongshen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construction and Building Materials 21 (2007), 539–545.

DOI: 10.1016/j.conbuildmat.2005.09.001

Google Scholar

[8] L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza, W.L. Repette, Effect of nanosilica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials 23 (2009), 2487–2491.

DOI: 10.1016/j.conbuildmat.2009.02.005

Google Scholar

[9] J. Bjornstrom, A. Martinelli, A. Matic, L. Borjesson, I. Panas, Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chemical Physics Letters 392 (2004), 242–248.

DOI: 10.1016/j.cplett.2004.05.071

Google Scholar

[10] L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, and J.A. Labrincha, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design, Constr Build Mater (2010).

DOI: 10.1016/j.conbuildmat.2010.01.012

Google Scholar

[11] T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cement and Concrete Research 35 (2005), 1943 – (1947).

DOI: 10.1016/j.cemconres.2005.07.004

Google Scholar

[12] K.L. Lin, W.C. Chang, D.F. Lin, H.L. Luo, M.C. Tsai, Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar, Journal of Environmental Management 88 (2008), 708–714.

DOI: 10.1016/j.jenvman.2007.03.036

Google Scholar

[13] G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research 34 (2004), 1043–1049.

DOI: 10.1016/j.cemconres.2003.11.013

Google Scholar

[14] J.J. Gaitero, I. Campillo, A. Guerrero, Reduction of the calcium leaching rate of ement paste by addition of silica nanoparticles, Cement and Concrete Research 38 (2008), 1112–1118.

DOI: 10.1016/j.cemconres.2008.03.021

Google Scholar

[15] Huigang Xiao, Mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cement and Concrete research, 34(3) (2004), 435-438.

DOI: 10.1016/j.cemconres.2003.08.025

Google Scholar

[16] Prince Arulraj. G., Jemimah Carmichael. M., Effect of Nano-Flyash on Strength of Concrete, International Journal of Civil and Structural Engineering, Volume 2, No 2, (2011), 475-482.

Google Scholar

[17] Li H, Xiao H-g, Yuan J, Ou J. Microstructure of cement mortar with nanoparticles. Compos B Eng, 35(2), (2004), 185–189.

Google Scholar

[18] Sanchez F., Sobolev K., Nanotechnology in concrete – a review, Construction and Building Materials 24, (2010), 2060-(2071).

DOI: 10.1016/j.conbuildmat.2010.03.014

Google Scholar

[19] Sobolev K., Flores I., Torres-Martinez L.M., Valdez P.L., Zarazua E., Cuellar E.L. Engineering of SiO2 nano-particles for optimal performance in nano-cement-based materials. Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic; (2009).

DOI: 10.1007/978-3-642-00980-8_18

Google Scholar

[20] Vallee F., Ruot B., Bonafous L., Guillot L., Pimpinelli N., Cassar L., Cementitious materials for self-cleaning and depolluting facade surfaces. RILEM proceedings, PRO 41 (RILEM international symposium on environment-conscious materials and systems for sustainable development), (2005).

DOI: 10.1617/2912143640.040

Google Scholar

[21] Jayapalan A., Kurtis K., Effect of nano-sized titanium dioxide on early age hydration of Portland cement, Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, Editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic; (2009).

DOI: 10.1007/978-3-642-00980-8_35

Google Scholar

[22] Li H., Zhang M-h, Ou J-p, Flexural fatigue performance of concrete containing nano-particles for pavement, Int J Fatig, 29(7), (2007), 1292–1301.

DOI: 10.1016/j.ijfatigue.2006.10.004

Google Scholar

[23] Lackhoff M., Prieto X., Nestle N., Dehn F., Niessner R. Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement ageing. Appl Catal B Environ, 43(3), (2003), 205–216.

DOI: 10.1016/s0926-3373(02)00303-x

Google Scholar

[24] Li H., Zhang M-h, Ou J-p, Abrasion resistance of concrete containing nanoparticles for pavement. Wear, 260(11–12), (2006), 1262–1266.

DOI: 10.1016/j.wear.2005.08.006

Google Scholar

[25] Li H., Xiao H-g, Ou J-p, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cem. Concr. Res., 34(3), (2004), 435–438.

DOI: 10.1016/j.cemconres.2003.08.025

Google Scholar

[26] Li Z., Wang H., He S., Lu Y., Wang M., Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett., 60(3), (2006), 356–359.

DOI: 10.1016/j.matlet.2005.08.061

Google Scholar

[27] Lee SJ., Kriven WM., Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Mater. Struct., 38 (1), (2005), 87–92.

DOI: 10.1007/bf02480579

Google Scholar

[28] Sobolev K., Ferrada-Gutiérrez M., How nanotechnology can change the concrete world: part 2. Am. Ceram. Soc. Bull., 84(11), (2005), 16–19.

Google Scholar

[29] Sobolev K., Mechano-chemical modification of cement with high volumes of blast furnace slag. Cem. Concr. Compos., 27(7–8), (2005), 848–853.

DOI: 10.1016/j.cemconcomp.2005.03.010

Google Scholar

[30] Siddique R., Klaus J., Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 2009; 43(3–4): 392–400.

DOI: 10.1016/j.clay.2008.11.007

Google Scholar

[31] Kuo W-Y, Huang J-S, Lin C-H. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cem. Concr. Res., 36(5), (2006), 886–895.

DOI: 10.1016/j.cemconres.2005.11.013

Google Scholar

[32] Birgisson B., Beatty C., Nanomodified concrete additive and high performance cement paste and concrete therefrom. International application number: PCT/US2007/073430. International filling date: 13. 07. (2007).

Google Scholar

[33] Ajayan PM., Nanotubes from carbon. Chem. Rev., 99, (1999), 1787–1799.

Google Scholar

[34] Makar JM., Margeson J., Luh J., Carbon nanotube/cement composites – early results and potential applications. In: Banthia N, Uomoto T, Bentur A, Shah SP, editors. Proceedings of 3rd international conference on construction materials: performance, innovations and structural implications. Vancouver, BC August 22–24, (2005).

Google Scholar

[35] Xie X-L, Mai Y-W, Zhou X-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R, 49(4), (2005), 89–112.

Google Scholar

[36] Cwirzen A., Habermehl-Cwirzen K., Nasibulin A., Kaupinen E., Penttala V., SEM/ AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Mater. Char. (2008). (Available online 12 November 2008).

DOI: 10.1016/j.matchar.2008.11.001

Google Scholar

[37] Konsta-Gdoutos MS., Metaxa ZS., Shah SP., Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32(2), (2010), 110–115.

DOI: 10.1016/j.cemconcomp.2009.10.007

Google Scholar

[38] Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction), Prague, Czech Republic, (2009).

DOI: 10.1007/978-3-642-00980-8_46

Google Scholar

[39] Sanchez F. Carbon nanofiber/cement composites: challenges and promises as structural materials. Inter. J. Mater. Struct. Integ., 3(2–3), (2009), 217–226.

Google Scholar

[40] Sanchez F., Ince C., Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites, Compos. Sci. Technol., 69(7–8), (2009), 1310–1318.

DOI: 10.1016/j.compscitech.2009.03.006

Google Scholar

[41] Li GY., Wang PM., Zhao X., Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 43(6), (2005), 1239–1245.

DOI: 10.1016/j.carbon.2004.12.017

Google Scholar

[42] Cwirzen A., Habermehl-Cwirzen K., Nasibulina LI., Shandakov SD., Nasibulin AG., Kauppinen EI., Cement composite, In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction), Prague, Czech Republic, (2009).

DOI: 10.1007/978-3-642-00980-8_24

Google Scholar