[1]
A.M. Neville, Properties of Concrete (4th ed. ), Prentice Hall/Pearson, Harlow, U.K. (2000).
Google Scholar
[2]
A. Dunster, Silica fume in concrete, Information paper n. IP 5/09, IHS BRE Press, Garston, U.K. (2009).
Google Scholar
[3]
S. Sakka, H. Kosuko, Handbook of sol-gel science and technology, Volume I: Solgel Processing, Kluwer Academic Publisher, New York, USA (2000), 9-10.
Google Scholar
[4]
M. Estevez, S. Vargas, V.M. Castaño, R. Rodríguez, Silica nano-particles produced by worms through a bio-digestion process of rice husk, Journal of Non-Crystalline Solids 355 (2009), 844–850.
DOI: 10.1016/j.jnoncrysol.2009.04.011
Google Scholar
[5]
D.J. Lieftink, The preparation and characterization of silica from acid treatment of olivine, Ph.D. Thesis (1997), 175, Utrecht University, The Netherlands.
Google Scholar
[6]
S. Sakka, H. Kosuko, Handbook of sol-gel science and technology, volume I: Solgel Processing, Kluwer Academic Publisher, New York, USA (2000), pp.9-10.
Google Scholar
[7]
Y. Qing, Z. Zenan, K. Deyu, Ch. Rongshen, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construction and Building Materials 21 (2007), 539–545.
DOI: 10.1016/j.conbuildmat.2005.09.001
Google Scholar
[8]
L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza, W.L. Repette, Effect of nanosilica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials 23 (2009), 2487–2491.
DOI: 10.1016/j.conbuildmat.2009.02.005
Google Scholar
[9]
J. Bjornstrom, A. Martinelli, A. Matic, L. Borjesson, I. Panas, Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chemical Physics Letters 392 (2004), 242–248.
DOI: 10.1016/j.cplett.2004.05.071
Google Scholar
[10]
L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, and J.A. Labrincha, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design, Constr Build Mater (2010).
DOI: 10.1016/j.conbuildmat.2010.01.012
Google Scholar
[11]
T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cement and Concrete Research 35 (2005), 1943 – (1947).
DOI: 10.1016/j.cemconres.2005.07.004
Google Scholar
[12]
K.L. Lin, W.C. Chang, D.F. Lin, H.L. Luo, M.C. Tsai, Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar, Journal of Environmental Management 88 (2008), 708–714.
DOI: 10.1016/j.jenvman.2007.03.036
Google Scholar
[13]
G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research 34 (2004), 1043–1049.
DOI: 10.1016/j.cemconres.2003.11.013
Google Scholar
[14]
J.J. Gaitero, I. Campillo, A. Guerrero, Reduction of the calcium leaching rate of ement paste by addition of silica nanoparticles, Cement and Concrete Research 38 (2008), 1112–1118.
DOI: 10.1016/j.cemconres.2008.03.021
Google Scholar
[15]
Huigang Xiao, Mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cement and Concrete research, 34(3) (2004), 435-438.
DOI: 10.1016/j.cemconres.2003.08.025
Google Scholar
[16]
Prince Arulraj. G., Jemimah Carmichael. M., Effect of Nano-Flyash on Strength of Concrete, International Journal of Civil and Structural Engineering, Volume 2, No 2, (2011), 475-482.
Google Scholar
[17]
Li H, Xiao H-g, Yuan J, Ou J. Microstructure of cement mortar with nanoparticles. Compos B Eng, 35(2), (2004), 185–189.
Google Scholar
[18]
Sanchez F., Sobolev K., Nanotechnology in concrete – a review, Construction and Building Materials 24, (2010), 2060-(2071).
DOI: 10.1016/j.conbuildmat.2010.03.014
Google Scholar
[19]
Sobolev K., Flores I., Torres-Martinez L.M., Valdez P.L., Zarazua E., Cuellar E.L. Engineering of SiO2 nano-particles for optimal performance in nano-cement-based materials. Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic; (2009).
DOI: 10.1007/978-3-642-00980-8_18
Google Scholar
[20]
Vallee F., Ruot B., Bonafous L., Guillot L., Pimpinelli N., Cassar L., Cementitious materials for self-cleaning and depolluting facade surfaces. RILEM proceedings, PRO 41 (RILEM international symposium on environment-conscious materials and systems for sustainable development), (2005).
DOI: 10.1617/2912143640.040
Google Scholar
[21]
Jayapalan A., Kurtis K., Effect of nano-sized titanium dioxide on early age hydration of Portland cement, Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, Editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic; (2009).
DOI: 10.1007/978-3-642-00980-8_35
Google Scholar
[22]
Li H., Zhang M-h, Ou J-p, Flexural fatigue performance of concrete containing nano-particles for pavement, Int J Fatig, 29(7), (2007), 1292–1301.
DOI: 10.1016/j.ijfatigue.2006.10.004
Google Scholar
[23]
Lackhoff M., Prieto X., Nestle N., Dehn F., Niessner R. Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement ageing. Appl Catal B Environ, 43(3), (2003), 205–216.
DOI: 10.1016/s0926-3373(02)00303-x
Google Scholar
[24]
Li H., Zhang M-h, Ou J-p, Abrasion resistance of concrete containing nanoparticles for pavement. Wear, 260(11–12), (2006), 1262–1266.
DOI: 10.1016/j.wear.2005.08.006
Google Scholar
[25]
Li H., Xiao H-g, Ou J-p, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cem. Concr. Res., 34(3), (2004), 435–438.
DOI: 10.1016/j.cemconres.2003.08.025
Google Scholar
[26]
Li Z., Wang H., He S., Lu Y., Wang M., Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett., 60(3), (2006), 356–359.
DOI: 10.1016/j.matlet.2005.08.061
Google Scholar
[27]
Lee SJ., Kriven WM., Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Mater. Struct., 38 (1), (2005), 87–92.
DOI: 10.1007/bf02480579
Google Scholar
[28]
Sobolev K., Ferrada-Gutiérrez M., How nanotechnology can change the concrete world: part 2. Am. Ceram. Soc. Bull., 84(11), (2005), 16–19.
Google Scholar
[29]
Sobolev K., Mechano-chemical modification of cement with high volumes of blast furnace slag. Cem. Concr. Compos., 27(7–8), (2005), 848–853.
DOI: 10.1016/j.cemconcomp.2005.03.010
Google Scholar
[30]
Siddique R., Klaus J., Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 2009; 43(3–4): 392–400.
DOI: 10.1016/j.clay.2008.11.007
Google Scholar
[31]
Kuo W-Y, Huang J-S, Lin C-H. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cem. Concr. Res., 36(5), (2006), 886–895.
DOI: 10.1016/j.cemconres.2005.11.013
Google Scholar
[32]
Birgisson B., Beatty C., Nanomodified concrete additive and high performance cement paste and concrete therefrom. International application number: PCT/US2007/073430. International filling date: 13. 07. (2007).
Google Scholar
[33]
Ajayan PM., Nanotubes from carbon. Chem. Rev., 99, (1999), 1787–1799.
Google Scholar
[34]
Makar JM., Margeson J., Luh J., Carbon nanotube/cement composites – early results and potential applications. In: Banthia N, Uomoto T, Bentur A, Shah SP, editors. Proceedings of 3rd international conference on construction materials: performance, innovations and structural implications. Vancouver, BC August 22–24, (2005).
Google Scholar
[35]
Xie X-L, Mai Y-W, Zhou X-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R, 49(4), (2005), 89–112.
Google Scholar
[36]
Cwirzen A., Habermehl-Cwirzen K., Nasibulin A., Kaupinen E., Penttala V., SEM/ AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Mater. Char. (2008). (Available online 12 November 2008).
DOI: 10.1016/j.matchar.2008.11.001
Google Scholar
[37]
Konsta-Gdoutos MS., Metaxa ZS., Shah SP., Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32(2), (2010), 110–115.
DOI: 10.1016/j.cemconcomp.2009.10.007
Google Scholar
[38]
Sanchez F, Zhang L, Ince C. Multi-scale performance and durability of carbon nanofiber/cement composites. In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction), Prague, Czech Republic, (2009).
DOI: 10.1007/978-3-642-00980-8_46
Google Scholar
[39]
Sanchez F. Carbon nanofiber/cement composites: challenges and promises as structural materials. Inter. J. Mater. Struct. Integ., 3(2–3), (2009), 217–226.
Google Scholar
[40]
Sanchez F., Ince C., Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites, Compos. Sci. Technol., 69(7–8), (2009), 1310–1318.
DOI: 10.1016/j.compscitech.2009.03.006
Google Scholar
[41]
Li GY., Wang PM., Zhao X., Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 43(6), (2005), 1239–1245.
DOI: 10.1016/j.carbon.2004.12.017
Google Scholar
[42]
Cwirzen A., Habermehl-Cwirzen K., Nasibulina LI., Shandakov SD., Nasibulin AG., Kauppinen EI., Cement composite, In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in construction: proceedings of the NICOM3 (3rd international symposium on nanotechnology in construction), Prague, Czech Republic, (2009).
DOI: 10.1007/978-3-642-00980-8_24
Google Scholar