Prefrontal Cortex Magnetic Stimulation, a Simulation Analysis

Article Preview

Abstract:

The presented work aims to elucidate where stimulation occurs in the brain during transcranial magnetic stimulation (TMS), taking into account cortical geometry. A realistic computer model of TMS was developed comprising a stimulation coil and the human cortex. The coil was positioned over the right dorsolateral prefrontal cortex (right DLPFC) and the distribution of the induced electric field was analyzed. A computer simulation was constructed, where the coil is positioned at an angle of 450 relative to the sagittal plane. The results highlight the influence of cortical geometry on the distribution of the electric field in the brain and show that the highest values are not obtained directly under the center of the stimulator.

You have full access to the following eBook

Info:

[1] L. Leocani, L. G. Cohen, E. M. Wassermann, K. Ikoma, M. Hallett Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms, Brain 123, pp.1161-1173, (2000).

DOI: 10.1093/brain/123.6.1161

Google Scholar

[2] E. M. Wassermann, C. M. Epstein, U. Ziemann, V. Walsh, T. Paus, S. H. Lisanby, The Oxford Handbook of Transcranial Stimulation, 1st Edition, pp.171-200, (2008).

Google Scholar

[3] C. Capaday, B.A. Lavoie, H. Barbeau, C. Schneider, M. Bonnard, Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex,. Journal of Neurophysiology 81, pp.129-139, (1999).

DOI: 10.1152/jn.1999.81.1.129

Google Scholar

[4] A. Cowey, V. Walsh, Tickling the brain: studying visual sensation, perception and cognition by transcranial magnetic stimulation, Progress in Brain Research 134, pp.411-425, (2001).

DOI: 10.1016/s0079-6123(01)34027-x

Google Scholar

[5] A. Pascual-Leone, V. Walsh, J. Rothwell, Transcranial magnetic stimulation in cognitive neuroscience - virtual lesion, chronometry, and functional connectivity, Current Opinion in Neurobiology 10, pp.232-237, (2000).

DOI: 10.1016/s0959-4388(00)00081-7

Google Scholar

[6] A. Pascual-Leone, J. Valls-Sole, E. M. Wassermann, M. Hallett, Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex, Brain 117, pp.847-858, (1994).

DOI: 10.1093/brain/117.4.847

Google Scholar

[7] S. Bagnato, A. Curra, N. Modugno, F. Gilio, A. Quartarone, V. Rizzo, P. Girlanda, M. Inghilleri, A. Bernardellu, One-hertz subthreshold rTMS increases the threshold for evoking inhibition in the human motor cortex, Experimental Brain Research 160, pp.368-374, (2005).

DOI: 10.1007/s00221-004-2020-0

Google Scholar

[8] F. B. Fitzgerald, T.L. Brown, Z. J. Daskalakis, R. Chen, J. Kulkarni, Intensity-dependent effects of 1 Hz rTMS on human corticospinal excitability, Clinical Neurophysiology 113, pp.1136-1141, (2002).

DOI: 10.1016/s1388-2457(02)00145-1

Google Scholar

[9] P. B. Fitzgerald, J. Benitez, T. Oxley, J. Z. Daskalakis, A. R. de Castella, J. Kulkarni, A study of the effects of lorazepam and dextromethorphan on the response to cortical 1 Hz repetitive transcranial magnetic stimulation, Neuroreport 16, pp.1525-1528, (2005).

DOI: 10.1097/01.wnr.0000177005.14108.f1

Google Scholar

[10] G. Heide, O. W. Witte, U. Ziemann, Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation, Experimental Brain Research 171, pp.26-34. (2006).

DOI: 10.1007/s00221-005-0262-0

Google Scholar

[11] K. Kujirai, T. Kujirai, T. Sinkjaer, J. C. Rothwell, Associative plasticity in human motor cortex under voluntary muscle contraction, Journal of Neurophysiology 96, pp.1337-1346, (2006).

DOI: 10.1152/jn.01140.2005

Google Scholar

[12] H. R. Siebner, N. Lang, V. Rizzo, M. A. Nitsche, W. Paulus, R. N. Lemon, J. C. Rothwell, Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex, Journal of Neuroscience 24, pp.3379-3385, (2004).

DOI: 10.1523/jneurosci.5316-03.2004

Google Scholar

[13] G. W. Thickbroom, M. L. Byrnes, D. J. Edwards, F. L. Mastaglia, Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: A new technique for modulating synaptic plasticity, Clinical Neurophysiology 117, 61-66, (2006).

DOI: 10.1016/j.clinph.2005.09.010

Google Scholar

[14] B. Boroojerdi, Pharmacologic influences on TMS effects, Journal of Clinical Neurophysiology 19, pp.255-271, (2002).

DOI: 10.1097/00004691-200208000-00002

Google Scholar

[15] A. Pascual-Leone, B. Rubio, F. Pallardo, M. D. Catala, Rapid-rate transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in drug-resistant depression, Lancet, 348, pp.233-237, (1996).

DOI: 10.1016/s0140-6736(96)01219-6

Google Scholar

[16] F. B. Fitzgerald, Z. J. Daskalakis, Review of Repetitive Transcranial Magnetic Stimulation Use in the Treatment of Schizophrenia,. Arch Gen Psychiatry, 60, pp.1002-1008, (2003).

Google Scholar

[17] R. M. Berman, M. Narasimhan, G. Sanacora, A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression, Biological Psychiatry 47, pp.332-337, (2000).

DOI: 10.1016/s0006-3223(99)00243-7

Google Scholar

[18] M. George, E. M. Wassermann, W. A. Williams, A. Callahan. T. A. Ketter, P. Basser, M. Hallet, R. M. Post Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression, Neuroreport 6, pp.1853-1856, (1995).

DOI: 10.1097/00001756-199510020-00008

Google Scholar

[19] R. Chen R, J. Classen, C. Gerloff, P. Celnik, E. M. Wassermann, M. Hallett, G. G. Cohen, Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation, Neurology 48, pp.1398-1403, (1997).

DOI: 10.1212/wnl.48.5.1398

Google Scholar

[20] C. Miniussi, C. Bonato, S. Bignotti, A. Gazzolli, M. Gennarelli, P. Pasqualetti, G. B. Tura, M. Ventriglia, P. M. Rossini, Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression?, Clinical Neurophysiology 116, pp.1062-1071, (2005).

DOI: 10.1016/j.clinph.2005.01.002

Google Scholar

[21] F. B. Fitzgerald, J. Benitez, A. de Castella, Z. J. Daskalakis, T. L. Brown, J. Kulkarni, A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression,. American Journal of Psychiatry 163, pp.88-94, (2006).

DOI: 10.1176/appi.ajp.163.1.88

Google Scholar

[22] D. O. Rumi, W. F. Gattaz, S. P. Rigonatti, M. A. Rosa, F. Fregni, M. O. Rosa, C. Mansur, M.L. Mycskowski, R. A. Moreno, M. A. Marcolin, Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study, Biological Psychiatry 57, pp.162-166, (2005).

DOI: 10.1016/j.biopsych.2004.10.029

Google Scholar

[23] H. B. Simpson, Y. Neria, R. Lewis-Fernández, F. Schneier, Anxiety Disorders: Theory, Research and Clinical Perspectives, p.330, (2010).

DOI: 10.1017/cbo9780511777578

Google Scholar

[24] R. J. Ilmoniemi, J. Ruohonen, J. Karhu, Transcranial magnetic stimulation – A new tool for functional imaging of the brain, Critical reviews in Biomedical Engineering, 27(3-5), pp.241-284, (1999).

Google Scholar

[25] C. Curta, S. Crisan and R. V. Ciupa, 3D Simulation Analysis of Transcranial Magnetic Stimulation, IFMBE Proceedings, Volume 36, Part 4, pp.316-319, (2011).

DOI: 10.1007/978-3-642-22586-4_66

Google Scholar

[26] J. Ruohonen, Transcranial Magnetic Stimulation: Modeling and New Techniques, PhD Thesis, Helsinki University of Technology, Espoo, Finland, (1998).

Google Scholar

[27] J. Moll, R. Zahn, R. de Oliveira-Souza, F. Krueger, J. Grafman, The neural basis of human moral cognition, Nature Reviews Neuroscience 6, pp.799-809, (2005).

DOI: 10.1038/nrn1768

Google Scholar

[28] S. B. Baumann, D. R. Wozny, S. K. Kelly, F. M. Meno, The Electrical Conductivity of Human Cerebrospinal Fluid at Body Temperature, IEEE Trans. on Biomedical Engineering, Vol. 44, No. 3, pp.220-223, (1997).

DOI: 10.1109/10.554770

Google Scholar