On-Line Monitoring of Yogurt Fermentation Using Acoustic Impedance Method

Article Preview

Abstract:

A non-contact ultrasonic system to monitor the yogurt fermentation process through a stainless steel reactor wall is described. During the process, the acoustic impedance was determined by using multiple reflections of ultrasound within the stainless steel wall. Thus, the wall was part of the measurement system. By basing on measurement multiple reflections, the instrument sensitivity is increased by the power of the reflection coefficient. Experimental results show that the acoustic impedance changes continuously while pH declines. It is very useful, especially on production scale for yogurt that the acoustic impedance measurement does not demand a liquid transparent to ultrasound. Also, this noncontact sensing method can reduce the risk of food contamination from measuring instrument, and contribute to hygienization for food manufacture industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

737-742

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. A. Lucey, M. Tamehana, H. Singh and P.A. Munro: Food Research Internationa, Vol. 31 (1998) No. 2, pp.147-155.

Google Scholar

[2] C. Cimander, M. Carlsson and C. -F Mandenius: J. Biotechnol, Vol. 99 (2002) No. 3, pp.237-248.

Google Scholar

[3] D. Dalgleish, M. Alexander and M. Corredig: Food Hydrocolloids, Vol. 18 (2004) No. 5, pp.747-755.

Google Scholar

[4] W. Krasaekoopt, B. Bhandari and H. Deeth: International Journal of Food Properties, Vol. 8 (2005) No. 2, pp.193-198.

Google Scholar

[5] M. Navrátil, C. Cimander and C. -F Mandenius: J. Agric. Food Chem., Vol. 52 (2004) No. 3, pp.415-420.

Google Scholar

[6] L. F. Van Heijkamp, I. M. De Schepper, M. Strobl, R. Hans Tromp, J. R. Heringa and W. G. Bouwman: J. Phys. Chem. A, Vol. 114 (2010) No. 7, pp.2412-2426.

DOI: 10.1021/jp9067735

Google Scholar

[7] A. Vercet, R. Oria, P. Marquina, S. Crelier and P. Lopez-Buesa: J. Agric. Food Chem., Vol. 50 (2002) No. 21, pp.6165-6171.

DOI: 10.1021/jf0204654

Google Scholar

[8] C. Smyth, K. Dawson and V. A. Buckin: Progress in Colloid and Polymer Science, Vol. 112 (1999), pp.221-226.

Google Scholar

[9] C. Dwyer, L. Donnelly and V. Buckin: Journal of Dairy Research, Vol. 72 (2005) No. 3, pp.303-310.

Google Scholar

[10] E. Kudryashov, C. Smyth, G. Duffy andV. Buckin: Progress in Colloid and Polymer Science, Vol. 115 (2000), pp.287-294.

Google Scholar

[11] C. Smyth, E. D. Kudryashov and V. Buckin: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vols. 183-185 (2001), pp.517-526.

DOI: 10.1016/s0927-7757(01)00563-5

Google Scholar

[12] M. S. Greenwood and J. A. Bamberger: Journal of Fluids Engineering, Vol. 126 (2004) No. 2, pp.189-192.

Google Scholar

[13] A. P. Sarvazyan: Annual Review of Biophysics and Biophysical Chemistry, Vol. 20 (1991), pp.321-342.

Google Scholar

[14] D.G. Dalgleish, E. Verespej, M. Alexander and M. Corredig: International Dairy Journal, Vol. 15 (2004) No. 11, pp.1105-1112.

Google Scholar

[15] K. F. Herzfeld and T. A. Litovitz: Absorption and Dispersion of Ultrasonic Waves (Academic Press, New York 1959).

Google Scholar

[16] P. Resa, T. Bolumar, L. Elvira, G. Pérez and F. M. De Espinosa: Journal of Food Engineering, Vol. 78 (2007) No. 6, p.1083–1091.

DOI: 10.1016/j.jfoodeng.2005.12.021

Google Scholar