[1]
Y. Fujii, Measurement of steep impulse response of a force transducer, Meas. Sci. Technol., Vol. 14, No. 1 pp.65-69, (2003).
DOI: 10.1088/0957-0233/14/1/310
Google Scholar
[2]
Y. Fujii, A method for calibrating force transducers against oscillation force, Meas. Sci. Technol., Vol. 14, No. 8, pp.1259-1264, (2003).
DOI: 10.1088/0957-0233/14/8/310
Google Scholar
[3]
Y. Fujii, Proposal for a step response evaluation method for force transducers, Meas. Sci. Technol., Vol. 14, No. 10, pp.1741-1746, (2003).
DOI: 10.1088/0957-0233/14/10/301
Google Scholar
[4]
Y. Fujii, Dynamic force calibration methods for force transducers, IEEE Trans. Instrum. Meas., Vol. 58, No. 7, pp.2358-2364, (2009).
DOI: 10.1109/tim.2009.2014614
Google Scholar
[5]
Y. Fujii, Toward dynamic force calibration, Measurement, Vol. 42, No. 7, pp.1039-1044, (2009).
DOI: 10.1016/j.measurement.2009.03.006
Google Scholar
[6]
Y. Fujii and T. Yamaguchi, Method for evaluating material viscoelasticity, Rev. Sci. Instrum., Vol. 75, No. 1, pp.119-123, (2004).
Google Scholar
[7]
Y. Fujii and T. Yamaguchi, Proposal for material viscoelasticity evaluation method under impact load, Journal of Materials Science, Vol. 40, No. 18, p.4785 – 4790, (2005).
DOI: 10.1007/s10853-005-2004-x
Google Scholar
[8]
Y. Fujii and D.W. Shu, Impact force measurement of an actuator arm of a hard disk drive, Int. J. Impact Eng., Vol. 35, No. 2, p.980108, (2008).
DOI: 10.1016/j.ijimpeng.2006.12.007
Google Scholar
[9]
Y. Fujii and T. Yamaguchi, Optical method for evaluating material friction, Meas. Sci. Technol., Vol. 15, No. 10, pp.1971-1976, (2004).
DOI: 10.1088/0957-0233/15/10/004
Google Scholar
[10]
Y. Fujii, Method for Measuring Transient Friction Coefficients for Rubber Wiper Blades on Glass Surface, Tribology International, Vol. 41, No. 1, pp.17-23, (2008).
DOI: 10.1016/j.triboint.2007.04.003
Google Scholar
[11]
Y. Fujii, T. Yamaguchi and J. Valera, Impact response measurement of a human arm, Experimental Techniques, Vol. 30, No. 3, pp.64-68, (2006).
DOI: 10.1111/j.1747-1567.2006.00045.x
Google Scholar
[12]
Y. Fujii and T. Yamaguchi, Method of evaluating the force controllability of human finger, IEEE Trans. Instrum. Meas., Vol. 55, No. 4, pp.1235-1241, (2006).
DOI: 10.1109/tim.2006.877720
Google Scholar
[13]
Y. Fujii, K. Maru and T. Jin, Method for evaluating the electrical and mechanical characteristics of a voice coil actuator, Precision Engineering, Vol. 34, No. 4, pp.802-806, (2010).
DOI: 10.1016/j.precisioneng.2010.04.003
Google Scholar
[14]
Y. Fujii and K. Shimada, Instrument for measuring the mass of an astronaut, Meas. Sci. Technol., Vol. 17, No. 10, pp.2705-2710, (2006).
DOI: 10.1088/0957-0233/17/10/024
Google Scholar
[15]
Y. Fujii and K. Shimada, The space scale: An Instrument for astronaut mass measurement, Trans. Jpn. Soc. Aeronaut. Space Sci., Vol. 50, No. 170, pp.251-257, (2008).
DOI: 10.2322/tjsass.50.251
Google Scholar
[16]
Y. Fujii, K. Shimada, M. Yokota, S. Hashimoto, Y. Sugita and H. Ito, Mass measuring instrument for use under microgravity conditions, Rev. Sci. Instrum., Vol. 79, No. 5, 056105-1-3, (2008).
DOI: 10.1063/1.2927193
Google Scholar
[17]
Y. Fujii, K. Shimada and K. Maru, Instrument for measuring the body mass of astronauts under microgravity conditions, Microgravity Science and Technology, Vol. 22, No. 1, pp.115-121, (2010).
DOI: 10.1007/s12217-009-9161-5
Google Scholar
[18]
Y. Fujii, K. Shimada, K. Maru, M. Yokota, S. Hashimoto, N. Nagai and Y. Sugita, Instrument for Measuring the Body Mass of Astronaut, Trans. Jpn. Soc. Aeronaut. Space Sci. Space Technol. Jpn., (in press).
DOI: 10.2322/tstj.7.th_1
Google Scholar
[19]
Y. Fujii, Optical method for accurate force measurement: dynamic response evaluation of an impact hammer, Optical Engineering, Vol. 45, No. 2, 023002-1-7, (2006).
DOI: 10.1117/1.2170713
Google Scholar
[20]
Y. Fujii, Method for generating and measuring the micro-Newton level forces, Mech. Syst. Signal Pr., Vol. 20, No. 6, pp.1362-1371, (2006).
DOI: 10.1016/j.ymssp.2005.01.001
Google Scholar
[21]
Y. Fujii, Microforce materials tester, Rev. Sci. Instrum. Vol. 76, No. 6, 065111-1-7, (2005).
Google Scholar
[22]
Y. Fujii, Microforce materials tester based on the levitation mass method, Meas. Sci. Technol., Vol. 18, No. 6, pp.1678-1682, (2007).
DOI: 10.1088/0957-0233/18/6/s02
Google Scholar
[23]
Y. Fujii, Method of generating and measuring static small force using down-slope component of gravity, Rev. Sci. Instrum., Vol. 78, No. 6, 066104-1-3, (2007).
DOI: 10.1063/1.2746823
Google Scholar
[24]
Y. Fujii, Measurement of force acting on a moving part of a pneumatic linear bearing, Rev. Sci. Instrum., Vol. 74, No. 6, pp.3137-3141, (2003).
DOI: 10.1063/1.1574396
Google Scholar
[25]
Y. Fujii, Frictional characteristics of an aerostatic linear bearing, Tribology International, Vol. 39, No. 9, pp.888-896, (2006).
DOI: 10.1016/j.triboint.2005.07.040
Google Scholar
[26]
Y. Fujii, An optical method for evaluating frictional characteristics of linear bearings, Optics and Lasers in Engineering, Vol. 42, No. 5, pp.493-501, (2004).
DOI: 10.1016/j.optlaseng.2004.03.006
Google Scholar
[27]
Y. Fujii and K. Maru, Optical method for evaluating dynamic friction of a small linear ball bearing, Tribology Transactions, Vol. 53, No. 2, pp.169-173, (2010).
DOI: 10.1080/10402000903097437
Google Scholar
[28]
Y. Fujii, Pendulum for precision force measurement, Rev. Sci. Instrum., Vol. 77, No. 3, 035111-1-5, (2006).
Google Scholar
[29]
Y. Fujii and J. Valera, Impact force measurement using an inertial mass and a digitizer, Meas. Sci. Technol., Vol. 17, No. 4, pp.863-868, (2006).
DOI: 10.1088/0957-0233/17/4/035
Google Scholar
[30]
Y. Fujii, Impact response measurement of an accelerometer, Mech. Syst. Signal Pr., Vol. 21, No. 5, pp.2072-2079, (2007).
Google Scholar
[31]
Y. Fujii and J. P. Hessling, A frequency estimation method for use in the Levitation Mass Method, Exp. Techniques, Vol. 33, No. 5, pp.64-69, (2009).
Google Scholar
[32]
Y. Fujii, Method for correcting the effect of the inertial mass on dynamic force measurements, Meas. Sci. Technol., Vol. 18, No. 5, pp. N13-N20, (2007).
DOI: 10.1088/0957-0233/18/5/n01
Google Scholar
[33]
Y. Fujii and K. Maru, Self-correction method for dynamic measurement error of force sensors, Exp. Techniques, (in press, published online).
Google Scholar
[34]
K. Maru and Y. Fujii, Wavelength-insensitive laser Doppler velocimeter using beam position shift induced by Mach-Zehnder interferometers, Optics Express, Vol. 17, No. 20, pp.17441-17449, (2009).
DOI: 10.1364/oe.17.017441
Google Scholar
[35]
K. Maru and Y. Fujii, Reduction of chromatic dispersion due to coupling for synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating, Optics Express, Vol. 17, No. 24, pp.22260-22270, Nov. (2009).
DOI: 10.1364/oe.17.022260
Google Scholar
[36]
K. Maru and Y. Fujii, Integrated wavelength-insensitive differential laser Doppler velocimeter using planar lightwave circuit, Journal of Lightwave Technology, Vol. 27, No. 22, pp.5078-5083, Nov. (2009).
DOI: 10.1109/jlt.2009.2027214
Google Scholar
[37]
K. Maru, K. Kobayashi, and Y. Fujii, Multi-point differential laser Doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity, Optics Express, Vol. 18, No. 1, pp.301-308, Jan. (2010).
DOI: 10.1364/oe.18.000301
Google Scholar