Precision Force Measurement Using the Levitation Mass Method (LMM)

Article Preview

Abstract:

This paper reviews the present status and future prospects of the levitation mass method (LMM), which is a precision mechanical measurement method. The LMM has been proposed and improved by the author for 10 years. The force generated by the actuator is measured as the inertial force of the mass levitated with sufficiently small friction using an aerostatic linear bearing and connected to the moving part of the actuator. During the measurement, the Doppler shift frequency of the laser beam reflected by the mass is measured with a high accuracy with the help of an optical interferometer. Subsequently, the velocity, position, acceleration, and inertial force of the mass are calculated using based on this frequency. Simultaneously, the current and voltage supplied to the actuator are measured.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Fujii, Measurement of steep impulse response of a force transducer, Meas. Sci. Technol., Vol. 14, No. 1 pp.65-69, (2003).

DOI: 10.1088/0957-0233/14/1/310

Google Scholar

[2] Y. Fujii, A method for calibrating force transducers against oscillation force, Meas. Sci. Technol., Vol. 14, No. 8, pp.1259-1264, (2003).

DOI: 10.1088/0957-0233/14/8/310

Google Scholar

[3] Y. Fujii, Proposal for a step response evaluation method for force transducers, Meas. Sci. Technol., Vol. 14, No. 10, pp.1741-1746, (2003).

DOI: 10.1088/0957-0233/14/10/301

Google Scholar

[4] Y. Fujii, Dynamic force calibration methods for force transducers, IEEE Trans. Instrum. Meas., Vol. 58, No. 7, pp.2358-2364, (2009).

DOI: 10.1109/tim.2009.2014614

Google Scholar

[5] Y. Fujii, Toward dynamic force calibration, Measurement, Vol. 42, No. 7, pp.1039-1044, (2009).

DOI: 10.1016/j.measurement.2009.03.006

Google Scholar

[6] Y. Fujii and T. Yamaguchi, Method for evaluating material viscoelasticity, Rev. Sci. Instrum., Vol. 75, No. 1, pp.119-123, (2004).

Google Scholar

[7] Y. Fujii and T. Yamaguchi, Proposal for material viscoelasticity evaluation method under impact load, Journal of Materials Science, Vol. 40, No. 18, p.4785 – 4790, (2005).

DOI: 10.1007/s10853-005-2004-x

Google Scholar

[8] Y. Fujii and D.W. Shu, Impact force measurement of an actuator arm of a hard disk drive, Int. J. Impact Eng., Vol. 35, No. 2, p.980108, (2008).

DOI: 10.1016/j.ijimpeng.2006.12.007

Google Scholar

[9] Y. Fujii and T. Yamaguchi, Optical method for evaluating material friction, Meas. Sci. Technol., Vol. 15, No. 10, pp.1971-1976, (2004).

DOI: 10.1088/0957-0233/15/10/004

Google Scholar

[10] Y. Fujii, Method for Measuring Transient Friction Coefficients for Rubber Wiper Blades on Glass Surface, Tribology International, Vol. 41, No. 1, pp.17-23, (2008).

DOI: 10.1016/j.triboint.2007.04.003

Google Scholar

[11] Y. Fujii, T. Yamaguchi and J. Valera, Impact response measurement of a human arm, Experimental Techniques, Vol. 30, No. 3, pp.64-68, (2006).

DOI: 10.1111/j.1747-1567.2006.00045.x

Google Scholar

[12] Y. Fujii and T. Yamaguchi, Method of evaluating the force controllability of human finger, IEEE Trans. Instrum. Meas., Vol. 55, No. 4, pp.1235-1241, (2006).

DOI: 10.1109/tim.2006.877720

Google Scholar

[13] Y. Fujii, K. Maru and T. Jin, Method for evaluating the electrical and mechanical characteristics of a voice coil actuator, Precision Engineering, Vol. 34, No. 4, pp.802-806, (2010).

DOI: 10.1016/j.precisioneng.2010.04.003

Google Scholar

[14] Y. Fujii and K. Shimada, Instrument for measuring the mass of an astronaut, Meas. Sci. Technol., Vol. 17, No. 10, pp.2705-2710, (2006).

DOI: 10.1088/0957-0233/17/10/024

Google Scholar

[15] Y. Fujii and K. Shimada, The space scale: An Instrument for astronaut mass measurement, Trans. Jpn. Soc. Aeronaut. Space Sci., Vol. 50, No. 170, pp.251-257, (2008).

DOI: 10.2322/tjsass.50.251

Google Scholar

[16] Y. Fujii, K. Shimada, M. Yokota, S. Hashimoto, Y. Sugita and H. Ito, Mass measuring instrument for use under microgravity conditions, Rev. Sci. Instrum., Vol. 79, No. 5, 056105-1-3, (2008).

DOI: 10.1063/1.2927193

Google Scholar

[17] Y. Fujii, K. Shimada and K. Maru, Instrument for measuring the body mass of astronauts under microgravity conditions, Microgravity Science and Technology, Vol. 22, No. 1, pp.115-121, (2010).

DOI: 10.1007/s12217-009-9161-5

Google Scholar

[18] Y. Fujii, K. Shimada, K. Maru, M. Yokota, S. Hashimoto, N. Nagai and Y. Sugita, Instrument for Measuring the Body Mass of Astronaut, Trans. Jpn. Soc. Aeronaut. Space Sci. Space Technol. Jpn., (in press).

DOI: 10.2322/tstj.7.th_1

Google Scholar

[19] Y. Fujii, Optical method for accurate force measurement: dynamic response evaluation of an impact hammer, Optical Engineering, Vol. 45, No. 2, 023002-1-7, (2006).

DOI: 10.1117/1.2170713

Google Scholar

[20] Y. Fujii, Method for generating and measuring the micro-Newton level forces, Mech. Syst. Signal Pr., Vol. 20, No. 6, pp.1362-1371, (2006).

DOI: 10.1016/j.ymssp.2005.01.001

Google Scholar

[21] Y. Fujii, Microforce materials tester, Rev. Sci. Instrum. Vol. 76, No. 6, 065111-1-7, (2005).

Google Scholar

[22] Y. Fujii, Microforce materials tester based on the levitation mass method, Meas. Sci. Technol., Vol. 18, No. 6, pp.1678-1682, (2007).

DOI: 10.1088/0957-0233/18/6/s02

Google Scholar

[23] Y. Fujii, Method of generating and measuring static small force using down-slope component of gravity, Rev. Sci. Instrum., Vol. 78, No. 6, 066104-1-3, (2007).

DOI: 10.1063/1.2746823

Google Scholar

[24] Y. Fujii, Measurement of force acting on a moving part of a pneumatic linear bearing, Rev. Sci. Instrum., Vol. 74, No. 6, pp.3137-3141, (2003).

DOI: 10.1063/1.1574396

Google Scholar

[25] Y. Fujii, Frictional characteristics of an aerostatic linear bearing, Tribology International, Vol. 39, No. 9, pp.888-896, (2006).

DOI: 10.1016/j.triboint.2005.07.040

Google Scholar

[26] Y. Fujii, An optical method for evaluating frictional characteristics of linear bearings, Optics and Lasers in Engineering, Vol. 42, No. 5, pp.493-501, (2004).

DOI: 10.1016/j.optlaseng.2004.03.006

Google Scholar

[27] Y. Fujii and K. Maru, Optical method for evaluating dynamic friction of a small linear ball bearing, Tribology Transactions, Vol. 53, No. 2, pp.169-173, (2010).

DOI: 10.1080/10402000903097437

Google Scholar

[28] Y. Fujii, Pendulum for precision force measurement, Rev. Sci. Instrum., Vol. 77, No. 3, 035111-1-5, (2006).

Google Scholar

[29] Y. Fujii and J. Valera, Impact force measurement using an inertial mass and a digitizer, Meas. Sci. Technol., Vol. 17, No. 4, pp.863-868, (2006).

DOI: 10.1088/0957-0233/17/4/035

Google Scholar

[30] Y. Fujii, Impact response measurement of an accelerometer, Mech. Syst. Signal Pr., Vol. 21, No. 5, pp.2072-2079, (2007).

Google Scholar

[31] Y. Fujii and J. P. Hessling, A frequency estimation method for use in the Levitation Mass Method, Exp. Techniques, Vol. 33, No. 5, pp.64-69, (2009).

Google Scholar

[32] Y. Fujii, Method for correcting the effect of the inertial mass on dynamic force measurements, Meas. Sci. Technol., Vol. 18, No. 5, pp. N13-N20, (2007).

DOI: 10.1088/0957-0233/18/5/n01

Google Scholar

[33] Y. Fujii and K. Maru, Self-correction method for dynamic measurement error of force sensors, Exp. Techniques, (in press, published online).

Google Scholar

[34] K. Maru and Y. Fujii, Wavelength-insensitive laser Doppler velocimeter using beam position shift induced by Mach-Zehnder interferometers, Optics Express, Vol. 17, No. 20, pp.17441-17449, (2009).

DOI: 10.1364/oe.17.017441

Google Scholar

[35] K. Maru and Y. Fujii, Reduction of chromatic dispersion due to coupling for synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating, Optics Express, Vol. 17, No. 24, pp.22260-22270, Nov. (2009).

DOI: 10.1364/oe.17.022260

Google Scholar

[36] K. Maru and Y. Fujii, Integrated wavelength-insensitive differential laser Doppler velocimeter using planar lightwave circuit, Journal of Lightwave Technology, Vol. 27, No. 22, pp.5078-5083, Nov. (2009).

DOI: 10.1109/jlt.2009.2027214

Google Scholar

[37] K. Maru, K. Kobayashi, and Y. Fujii, Multi-point differential laser Doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity, Optics Express, Vol. 18, No. 1, pp.301-308, Jan. (2010).

DOI: 10.1364/oe.18.000301

Google Scholar