[1]
S. M. Bauer, G. A. Lyubimov, and P. E. Tovstik. Mathematical Modeling of Maklakoff's Method for Measuring the Intraocular Pressure. Fluid Dynamics, Vol. 40, No. 1, 2005, p.20–33.
DOI: 10.1007/s10697-005-0040-5
Google Scholar
[2]
Friedenwald JS: Contribution to the theory and practice of tonometry. Am J Ophthalmol 20: 985-1024, (1937).
Google Scholar
[3]
Woo, S.L., Kobayashi, A.S., Lawrence, C., Schlegel, W.A., 1972. Mathematical model of the corneo-scleral shell as applied to intraocular pressure volume relations and applanation tonometry. Ann. Biomed. Eng. 1, 87-98.
DOI: 10.1007/bf02363420
Google Scholar
[4]
Yuichi Kurita et al, Contact-Based Stiffness Sensing of Human Eye, IEEE Transactions on Biomedical Engineering , Vol. 55, No. 2, Feb. 2008, 739-745.
Google Scholar
[5]
Sheldon Weineaum. A Mathematical model for the elastic and fluid mechanical behavior of the human eye. Bulletin of Math. Biophysics. 1965, Vol., 27: 325-354.
DOI: 10.1007/bf02478410
Google Scholar
[6]
Jian-guo Ma et al., A miniaturized applanation tonometer, IEEE Transactions on Biomedical Engineering, Vol. 46, pp.947-951, (1999).
DOI: 10.1109/10.775404
Google Scholar
[7]
Goldmann H, Schmidt T: Applanation tonometry. Ophthalmologica 134: 221-42, (1957).
Google Scholar
[8]
Jian-guo Ma, Cone prism: principles of optical design and linear measurement of the applanation diameter or area of the cornea, Applied Optics, 38, pp.2086-2091, (1999).
DOI: 10.1364/ao.38.002086
Google Scholar
[9]
Orssengo GJ, Pye DC. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 1999; 61: 551–572.
DOI: 10.1006/bulm.1999.0102
Google Scholar
[10]
Pallikaris, I.G., Kymionis, G.D., Ginis, H.S., Kounis, G.A., Tsilimbaris, M.K., 2005. Ocular rigidity in living human eyes. Invest. Ophthalmol. Vis. Sci. 46, 409-414.
DOI: 10.1167/iovs.04-0162
Google Scholar
[11]
Chen Weiyi et al, The Experimental Study on Ocular Rigidity of Rabbit in Vivo. in Proc. BMEI, 2009, pp.1-4.
Google Scholar