[1]
Gough H.J.: Some Experiments on the Resistance of Metals to Fatique under Combined Stresses, London: His Majesty's Stationery Office (1951).
Google Scholar
[2]
Nishihara T, Kawamoto M.: The strength of Metals under Combined Alternating Bending and Torsion with Phase Difference. Memoirs of the College of Engineering, Kyoto Imperial University, Vol. X, No. 6 (1941).
Google Scholar
[3]
Lee S.B.: A criterion for fully reversed out–of–phase torsion and bending, Multiaxial fatigue ASTM STP 853, Philadelphia (1985), p.553–568.
DOI: 10.1520/stp36242s
Google Scholar
[4]
Findley W.N.: A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, (1959), p.301–306.
DOI: 10.1115/1.4008327
Google Scholar
[5]
McDiarmid D.L.: Fatigue under out–of–phase bending and torsion, Fatigue Fract. Engng Mater. Struct., Vol. 9, No. 6, (1987), p.457–475.
DOI: 10.1111/j.1460-2695.1987.tb00471.x
Google Scholar
[6]
Carpinteri A., Spagnoli A.: Multiaxial high–cycle fatigue criterion for hard metals, Int J Fatigue 23, (2001), p.135–145.
DOI: 10.1016/s0142-1123(00)00075-x
Google Scholar
[7]
Kurek M., Łagoda T.: Comparison of fatigue characteristics for some selected constructional materials under bending and torsion, 6th International Conference Mechatronic Systems and Materials, July, (2010) pp.117-118.
DOI: 10.1007/s11003-011-9401-x
Google Scholar
[8]
Kurek M., Łagoda T.: Algorytm oceny trwałości zmęczeniowej dla materiałów cechujących się nierównoległością charakterystyk zmęczeniowych w warunkach cyklicznego obciążenia (engl: Algorithm of fatigue life assessment for the materials with out – of parallel fatifue characteristics under cyclic loading), XXIV Konferencja Naukowa Problemy Rozwoju Maszyn Roboczych, Zakopane, (2011).
Google Scholar
[9]
Walat K., Łagoda T., Application of the covariance on the critical plane for determination of fatigue life under cyclic loading, Procedia Engineering, Vol. 2, 2010, p.1211–1218.
DOI: 10.1016/j.proeng.2010.03.131
Google Scholar
[10]
Walat K., Łagoda T., The equivalent stress on the critical plane determined by the maximum covariance of normal and shear stresses, Mat. -wiss. u. Werkstofftech., 2010, Vol. 41, No. 4, pp.218-220.
DOI: 10.1002/mawe.201000581
Google Scholar
[11]
Łagoda T., Ogonowski P., Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Mat. -wiss. u. Werkstofftech, (2005), Vol. 36, No 9, pp.429-437.
DOI: 10.1002/mawe.200500898
Google Scholar
[12]
ASTM E 739-91 (1998): Standard practice for statistical analysis of linearized stress–life (S–N) and strain life (e–N) fatigue data, in: Annual Book of ASTM Standards, Vol. 03. 01, Philadelphia (1999), p.614–620.
Google Scholar
[13]
Kohut M., Łagoda T.: Badania zmęczeniowe mosiądzu MO58 w warunkach proporcjonalnego zginania ze skręcaniem, (engl: Fatigue tests of MO58 brass under proportional bending with torsion), III Sympozjum Mechaniki Zniszczenia Materiałów i Konstrukcji, Augustów 1-4 czerwca (2004).
Google Scholar
[14]
Esderts A.: Betriebsfestigkeit bei mehrachsiger Biege – und Torsionsbeanspruchung, (engl: Fatigue under multiaxial bending and torsion), Fakultaet fuer Berbau, Huettenwesen und Maschinenwesen der Technischen Universitaet Clausthal, 9 Juni (1995).
Google Scholar
[15]
Sanetra C.: Untersuchungen zum Festigkeitsverhalten bei mehrachsiger Randombeanspruchung unter Biegung und Torsion, (engl: Studies on the strength behavior in case of multiaxial random loading under bending and torsion) Dissertation, Tech. Universitat Clausthal, (1991).
Google Scholar
[16]
Morel F.: Fatique Multiaxiale Sous Chargement D'amplitude Variable, (engl: Multiaxial fatigue at variable amplitudes) PhD thesis, Futuruscope (1996).
Google Scholar