[1]
J. Lin, L. Qu: Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis, Journal of Sound and Vibration, Vol. 234 (2000), pp.135-148.
DOI: 10.1006/jsvi.2000.2864
Google Scholar
[2]
H. Qiu, J. Lee, J. Lin, and G. Yu: Robust performance degradation assessment methods for enhanced rolling element bearing prognostics, Advanced Engineering Informatics, vol. 17(2003), pp.127-140.
DOI: 10.1016/j.aei.2004.08.001
Google Scholar
[3]
H. Qiu, J. Lee, J. Lin, and G. Yu: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics, Journal of Sound and Vibration, Vol. 289 (2006), pp.1066-1090.
DOI: 10.1016/j.jsv.2005.03.007
Google Scholar
[4]
L. Li, L. Qu and X. Liao: Haar wavelet for machine fault diagnosis, Mechanical Systems and Signal Processing, vol. 21(2007), pp.1773-1786.
DOI: 10.1016/j.ymssp.2006.07.006
Google Scholar
[5]
S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani: Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine, Mechanical System and Signal Processing, Vol. 21 (2007), pp.2933-2945.
DOI: 10.1016/j.ymssp.2007.02.003
Google Scholar
[6]
J. M. Lee, S. J. Kim, Y. Hwang, and C. S. Song: Diagnosis of mechanical fault signals using continuous hidden Markov model, Journal of Sound and Vibration, vol. 276(2004), pp.1065-1080.
DOI: 10.1016/j.jsv.2003.08.021
Google Scholar
[7]
V. Purushotham, S. Narayanan and S. Prasad: Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition, NDT and E International, vol. 38(2005), pp.654-664.
DOI: 10.1016/j.ndteint.2005.04.003
Google Scholar
[8]
F. V. Nelwamondo, T. Marwala and U. Mahola: Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, Mel-frequency cepstral coefficients and fractals, International Journal of Innovative Computing, Information and Control, vol. 2(2006).
DOI: 10.1109/ijcnn.2006.247310
Google Scholar
[9]
H. Ocak, K. A. Loparo and F. M. Discenzo: Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics, Journal of Sound and Vibration, Vol. 302 (2007), pp.951-961.
DOI: 10.1016/j.jsv.2007.01.001
Google Scholar
[10]
M. Dong and D. He: Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis, European Journal of Operational Research, Vol. 178 (2007), pp.858-878.
DOI: 10.1016/j.ejor.2006.01.041
Google Scholar
[11]
M. Dong and D. He: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology, Mechanical System and Signal Processing, Vol. 21 (2007), pp.2248-2266.
DOI: 10.1016/j.ymssp.2006.10.001
Google Scholar
[12]
B. Ling, M. Khonsari, A. Mesgarnejad, and R. Hathaway: Online coated ball bearing health monitoring using degree of randomness and Hidden Markov Model, IEEE Aerospace Conference, (2009), pp.1-10.
DOI: 10.1109/aero.2009.4839674
Google Scholar
[13]
H. Qiu, J. Lee, J. Lin, and G. Yu: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics, Journal of Sound and Vibration, vol. 289(2006), pp.1066-1090.
DOI: 10.1016/j.jsv.2005.03.007
Google Scholar