[1]
Thomas L C, Edelman D B, Crook J N. Credit Scoring and Its Application[M].Society for Industrial and Applied Mathematics, Philadelphia, 2002.
Google Scholar
[2]
Davis, R. H., Edelman, D.B. Gamerman.J..Machine learning algorithms for credit-card applications[J]. Journal of Mathematics Applied in Business and Industry, 1992,4:43-51.
Google Scholar
[3]
Fogarty TC, Ireson N. Evolving Bayesian classifiers for credit control: a comparison with other machine learning methods[J]. IMA Journal of Mathematics Applied in Business and Industry, 1994.5:63-75
DOI: 10.1093/imaman/5.1.63
Google Scholar
[4]
Shin K S, Lee T S, Kim H J. An Application of Support Vector Machines in Bankruptcy Prediction Model [J]. Expert Systems with Applications, 2005, 28.
DOI: 10.1016/j.eswa.2004.08.009
Google Scholar
[5]
V.Vapnik. Statistical Learning Theory[M]. New York: John Wiley & Sons, (1998)
Google Scholar
[6]
C.F. Lin, S.D. Wang. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13(2):464-471.
DOI: 10.1109/72.991432
Google Scholar
[7]
WANG Y Q, WANG S Y, LAI K K. A new fuzzy support vector machine to evaluate credit risk[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 820 - 831
DOI: 10.1109/tfuzz.2005.859320
Google Scholar
[8]
C.F. Lin, S. D.Wang. Fuzzy support vector machines with automatic membership setting[J]. StudFuzz ,2005(177):233-254
Google Scholar
[9]
UCI Machine Learning Repository http:// www.ics.uci.edu/~mlearn
Google Scholar