Investigation into the Electromagnetic Interference Shielding Effectiveness of Silicon Rubber Filled with Carbon Fiber

Article Preview

Abstract:

In this paper, the silicone rubber composed of carbon fibers was prepared. The influence of different concentration of carbon fibers on the conductivity, electromagnetic shielding interference effectiveness property of the silicone rubber was discussed from the point of view of condition of carbon fiber and silicone rubber. The results showed that there existed the extreme conductivity and shielding effectiveness (SE) across the tested frequency range from 2.6 GHz to 3.95 GHz of silicone rubber composites filled with carbon fibers. When the content of the carbon fibbers was 50 parts per hundred of rubber (phr), the SE values of composites were typically above 63 dB and close to the extremum. The compact packing structure of carbon fibers does not play an important role in improved the conductivity of composite. The SE of the composite depends on the conductivity of composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1392-1396

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.M. Han, J.Y. Zhang, Q.Y. Yang, L. Shi, S.C. Qi, R.G. Jin, Novel polymethoxylsiloxane-based crosslinking reagent and its in-situ improvement for thermal and mechanical properties of siloxane elastomer, J. Appl. Polym. Sci, vol. 107, pp.3788-3795, March (2008).

DOI: 10.1002/app.27505

Google Scholar

[2] E.S. Park, Processibility and mechanical properties of micronized polytetrafluoroethylene reinforced silicone rubber composites, J. Appl. Polym. Sci, vol. 107, pp.372-381, January (2008).

DOI: 10.1002/app.27065

Google Scholar

[3] P.B. Liu, D.L. Liu, H.W. Zou, P. Fan, W. Xu, Structure and properties of closed-cellfoam prepared from irradiation crosslinked silicone rubber, J. Appl. Polym. Sci, vol. 113, pp.3590-3595, Septemper (2009).

DOI: 10.1002/app.30341

Google Scholar

[4] E.S. Park, Mechanical properties and antibacterial activity of peroxide-cured silicone rubber foams, J. Appl. Polym. Sci, vol. 110, pp.1723-1729, November (2008).

DOI: 10.1002/app.28750

Google Scholar

[5] R. Sanden, Castable silicone based heat insulations for jet engines, Polym Test, vol. 21, pp.61-64, January (2002).

DOI: 10.1016/s0142-9418(01)00048-4

Google Scholar

[6] L.Y. Jia, Z.J. Du, C. Zhang, C.J. Li, H.Q. Li, Reinforcement of polydimethylsiloxane through formation of inorganic–organic hybrid network, , Polym. Eng. Sci, vol. 48, pp.74-79, January (2008).

DOI: 10.1002/pen.20856

Google Scholar

[7] J.G. Kohl, I.L. Singer, D.L. Simonson, Determining the viscoelastic parameters of thin elastomer based materials using continuous microindentation, Polym Test, vol. 27, pp.679-682, Septemper (2008).

DOI: 10.1016/j.polymertesting.2008.04.010

Google Scholar

[8] Y.X. Jia, S. Sun, L.L. Liu, S.X. Xue, G.Q. Zhao, Investigation of computer-aided engineering of silicone rubber vulcanizing (I)—vulcanization degree calculation based on temperature field analysis, Polymer, vol. 44, pp.319-326, January (2003).

DOI: 10.1016/s0032-3861(02)00704-8

Google Scholar

[9] J. Zhang, S.Y. Feng, Effect of crosslinking on the conductivity of conductive silicone rubber, J. Appl. Polym. Sci, vol. 89, pp.3471-3475, Septemper (2003).

DOI: 10.1002/app.12560

Google Scholar

[10] L. Chen, L. Lu, D.J. Wu, G.H. Chen, Silicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold, Polym. Compos, vol. 28, pp.493-498, August (2007).

DOI: 10.1002/pc.20323

Google Scholar

[11] L. Meunier, G. Chagnon, D. Favier, L. Orgeas, P. Vacher,  Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber, Polym. Test, vol. 27, pp.765-777, Septemper (2008).

DOI: 10.1016/j.polymertesting.2008.05.011

Google Scholar

[12] E.S. Park, Mechanical properties and processibility of glass–fiber-, wollastonite-, and fluoro-rubber-reinforced silicone rubber composites, J. Appl. Polym. Sci, vol. 105, pp.460-468, July (2007).

DOI: 10.1002/app.26063

Google Scholar

[13] Q. Xu, M.L. Pang, L.X. Zhu, Y.Y. Zhang, S.Y. Feng, Mechanical properties of silicone rubber composed of diverse vinyl content silicone gums blending, Mater. Des, vol. 31, p.4083–4087, October (2010).

DOI: 10.1016/j.matdes.2010.04.052

Google Scholar

[14] Y. P Duan, S. H Liu, H. T Guan, Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite, Sci. Technol . Adv. Mater, vol. 6, pp.513-518, July (2005).

Google Scholar

[15] A. Kaynak, Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300–2000 MHz frequency range, : Mater. Res. Bull, vol. 31, pp.845-860, July (1996).

DOI: 10.1016/0025-5408(96)00038-4

Google Scholar