Adaptive Nonlinear Teleoperation with Time Delay Using Modified Wave Variable Based Controller

Article Preview

Abstract:

Transparency and stability are two key issues in bilateral teleoperation. In this paper, We propose a novel control framework for bilateral teleoperation of nonlinear robotic teleoperation systems under constant communication delays. The proposed approach utilizes the modified wave variable method based on the adaptive nonlinear control, the master and slave robots are directly connected over the delayed communication channels. To make the stability of the system independent of the communication delay, two nonlinear adaptive motion/force controllers are bilaterally designed for both master and slave manipulators and insured its passivity. To improve the transparency, a modified wave variable method based on Nimeyer-Slotine wave ways was used. Simulation results are presented which demonstrate the effectiveness of the proposed architecture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2284-2295

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Chopra, M. W. Spong, R. Ortega and N. Barbanov, On Tracking Performance in Bilateral Teleoperation, IEEE Transactions on Robotics, Vol. 22, No. 4, p.861–866, (2006).

DOI: 10.1109/tro.2006.878942

Google Scholar

[2] P. F. Hokayem and M. W. Spong, Bilateral teleoperation: An Historical Survey, Automatica, Vol. 42, No. 12, p.2035–2057, (2006).

DOI: 10.1016/j.automatica.2006.06.027

Google Scholar

[3] H. Kawada and T. Namerikawa, Bilateral Control of Nonlinear Teleoperation with Time Varrying Communication Delays, in Proc. American Control. Conf., pp.189-194, (2008).

DOI: 10.1109/acc.2008.4586489

Google Scholar

[4] D. A Lawrence, Stability and transparency in bilateralteleoperation, Robot. Automat. IEEE Trans., Vol. 9, pp.624-637, (1993).

Google Scholar

[5] K. Hashtrudi-Zaad and S. E. Salcudean, On the use of local force feedback for transparency of teleoperation, in Proc. IEEE Int. Conf. Robot. Automat., Vol. 3, pp.1863-1869, (1999).

DOI: 10.1109/70.988981

Google Scholar

[6] N. Chopra and M. W. Spong, Passivity-based control of multi-agent systems,. Advances in robot control, from everyday physics to human-like movements p.107–134. Berlin: Springer-Verlag.

DOI: 10.1007/978-3-540-37347-6_6

Google Scholar

[7] R. J. Anderson and M. W. Spong, Bilateral control of teleoperators with time delay, , IEEE Transactions on Automation Control, Vol. 34, No. 4, p.494–501, (1989).

DOI: 10.1109/9.24201

Google Scholar

[8] G. Niemeyer and J-J. E. Slotine, Stable adaptive teleoperation, IEEE Journal of OceanicEngineering , Vol. 16, No. 1, p.152–162, (1991).

DOI: 10.1109/48.64895

Google Scholar

[9] N. Chopra, M. W. Spong, S. Hirche and M. Buss, Bilateralteleoperation over the internet: The time varying delay problem, American Control Conference, Vol. 1, No. 5, p.155–160, (2003).

DOI: 10.1109/acc.2003.1238930

Google Scholar

[10] N. Chopra, M. W. Spong and R. Lozano, Adaptive coordination control of bilateral teleoperators with time delay, Proc. IEEE CDC p.4540–4547.

DOI: 10.1109/cdc.2004.1429499

Google Scholar

[11] N. Chopra, M. W. Spong, Ortega, R., and N. E. Barabanov, On tracking performance in bilateral teleoperation, , IEEE Transactions on Robotics, Vol . 4, No22, p.861–866, (2006).

DOI: 10.1109/tro.2006.878942

Google Scholar

[12] K. Kosuge, H. Murayama, and K. Takeo, Bilateral feedback control of telemanipulators via computer network, Proc. IROS96, p.1380–13850, (1996).

DOI: 10.1109/iros.1996.568996

Google Scholar

[13] D. J. Lee, and M. W. Spong, Passive bilateral teleoperation with constant time delay, IEEE Transactions on Robotics, , Vol . 2, No22, p.269–281, (2006).

DOI: 10.1109/tro.2005.862037

Google Scholar

[14] D. D. Nam and T. Namerkawa , Impedance control for force - Reflecting teleoperation with communication delays based on IOS small gain theorem, , IEEE ICCAS-SICE , pp.4079-4085, (2009).

Google Scholar

[15] S. Munir, and W. J. Book, Internet-based teleoperation using wave variables with prediction,. IEEE-ASME Transactions on Mechatronics, Vol. 2, No2, p.124–133, (2002).

DOI: 10.1109/tmech.2002.1011249

Google Scholar

[16] G. Niemeyer, and J. J. -E. Slotine, Stable adaptive teleoperation. International Journal on Oceanic Engineering, Vol. 1 No16, p.152–162. (1991).

DOI: 10.1109/48.64895

Google Scholar

[17] J. -H. Ryu, D. -S Kwon, and B. Hannaford, Stable tele-operation with time-domain passivity control, IEEE Transactions on Robotics and Automation, Vol. 2 No20, p.365–373, (2004).

DOI: 10.1109/tra.2004.824689

Google Scholar

[18] S Stramigioli, Schaft, A. V. D., Maschke, B, and C. Melchiorri,. Geometric scattering in robotic telemanipulation, IEEE Transactions on Robotics and Automation, Vol. 4 No18, p.588–596, (2002).

DOI: 10.1109/tra.2002.802200

Google Scholar

[19] N. A. Tanner, and G. Niemeyer,. Improving perception in time delayed telerobotics, The International Journal on Robotic Research, Vol. 8, No24, p.631–644. (2005).

DOI: 10.1177/0278364905056261

Google Scholar

[20] Kim, W.S., Developments of New Force Reflecting ControlSchemes and Application to a Teleoperation Training Simulator, Proc. IEEE ICRA, Nice, France, pp.1412-1419, May, (1992).

Google Scholar

[21] Salcudean, S.E., Zhu, M., Zhu, W.H., and Hashtrudi-Zaad, K., Transparent Bilateral Teleoperation under Position and Rate Control, The Int. J. Robot. Res., Vol. 19, No. 12, pp.1185-1202, Dec, (2000).

DOI: 10.1177/02783640022068020

Google Scholar

[22] Y. Yokokohji and T. Yoshikawa, Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling, IEEE Trans. Robot. Automat., Vol. 10, pp.605-620, (1994).

DOI: 10.1109/70.326566

Google Scholar

[23] D. J. Lee and P. Y. Li. Passive, bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators, IEEE Transactions on Robotics, Vol. 21, No. 5, p.936–951, (2005).

DOI: 10.1109/tro.2005.852259

Google Scholar

[24] Lee Dongjun and P. Y. Li, Passive Decomposition and Control of Interactive Mechanical Systems under Coordination Requirements, IEEE Decision and Control Conference, Vol. 2, No. 43, p.1240–1245, (2004).

DOI: 10.1109/cdc.2004.1430211

Google Scholar

[25] W. H. Zhu and S. E. Salcudean, Stability Guaranteed Teleoperation: An Adaptive Motion/Force Control Approach, IEEE IEEE Transactions on Robotics, Vol. 45, No. 11, p.1951–1969, (2005).

DOI: 10.1109/9.887620

Google Scholar