[1]
Ahmed, M. A., Saadany, E., & Jaber, M. Y. A production/remanufacturing inventory model with price and quality dependant return rate. Computers & Industrial Engineering, vol. 58, 2010, pp.352-362.
DOI: 10.1016/j.cie.2009.01.017
Google Scholar
[2]
Braun, M. (1991) An Introduction to Applied Mathematics: Springer.
Google Scholar
[3]
Dobos, I., & Richter, K. An extended production/recycling model with stationary demand and return rates. Int. J. Production Economics, vol. 90, 2004, pp.311-323.
DOI: 10.1016/j.ijpe.2003.09.007
Google Scholar
[4]
Fleischmann, M. Quantitative models for reverse logistics, PhD thesis, Erasmus university rotterdam, The netherlands, (2000).
Google Scholar
[5]
Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nuenen, J. A. E. E., & van Wassenhove, L. N. Quantitative models for reverse logistics: A review. European Journal of Operational Research, vol. 103, 1997, pp.1-17.
DOI: 10.1016/s0377-2217(97)00230-0
Google Scholar
[6]
Fleischmann, M., Kuik Roelof, K., & Dekker, R. Controlling inventories with stochastic item returns: A basic model. European Journal of Operational Research, vol. 138, 2002, pp.63-75.
DOI: 10.1016/s0377-2217(01)00100-x
Google Scholar
[7]
Heyman, D. P. Optimal disposal policies for a single-item inventory system with returns. Naval Research Logistics Quarterly, vol. 24, 1977, pp.385-405.
DOI: 10.1002/nav.3800240302
Google Scholar
[8]
Incropera, F. P., & DeWitt, D. P. Introduction to Heat Transfer: Wiley, 2001. .
Google Scholar
[9]
Jaber, M. Y., Nuwayhid, R. Y., & Rosen, M. A. A thermodynamic approach to modelling the economic order quantity. Applied Mathematical Modelling, vol. 30, 2006, pp.867-883.
DOI: 10.1016/j.apm.2005.07.001
Google Scholar
[10]
Jaber, M. Y., & Rosen, M. A. The economic order quantity repair and waste disposal model with entropy cost. European Journal of Operational Research, vol. 188, 2008, pp.109-120.
DOI: 10.1016/j.ejor.2007.03.016
Google Scholar
[11]
Koh, S. G., Hwang, H., Sohn, K. I., & Ko, C. S. An optimal ordering and recovery policy for reusable items. Computers & Industrial Engineering, vol. 43, 2002, pp.59-73.
DOI: 10.1016/s0360-8352(02)00062-1
Google Scholar
[12]
Mabini, M. C., & Pintelon, L. M. EOQ type formulations for controlling repairable inventories. Int. J. Production Economics, vol. 28, 1992, pp.21-33.
DOI: 10.1016/0925-5273(92)90110-s
Google Scholar
[13]
Richter, K. The EOQ repair and waste disposal model with variable setup numbers. European Journal of Operational Research, vol. 95, 1996 pp.313-324.
DOI: 10.1016/0377-2217(95)00276-6
Google Scholar
[14]
Rogers, D. S., & Tibben-Lembke, R. S. Going Backwards: Reverse Logistics Trends and Practices. RLEC Press, Pittsburgh, PA, (1996).
Google Scholar
[15]
chrady, D. A. A deterministic inventory model for repairable items. Naval Research Logistics Quarterly, vol. 14, 1967, pp.391-398.
DOI: 10.1002/nav.3800140310
Google Scholar
[16]
Tang, O., & Grubbstron, R. W. Considering stochastic lead times in a manufacturing/remanufacturing system with deterministic demands and returns. Int. J. Production Economics, vol. 93-94, 2005, pp.285-300.
DOI: 10.1016/j.ijpe.2004.06.027
Google Scholar
[17]
Teunter, R. H. Economic ordering quantities for remanufacturable item inventory systems. Naval Research Logistics, vol. 48(6), 2001, pp.484-495.
DOI: 10.1002/nav.1030
Google Scholar