[1]
P.S. Crook, R.D. Tanner, Hopf bifurcation for a variable yield continuous fermentation model, Int.J. Eng. Sci., vol. 20, 1982, pp.439-443.
Google Scholar
[2]
X. Huang, Limit cycles in a continuous fermentation model[J]. J. Math. Chem. vol. 5, 1990, pp.287-296.
Google Scholar
[3]
Lemin zhu, Xuncheng Huang. Relative positions of limit cycles in the continuous vessel with variable yield[J]. J. Math. Chem. vol. 38, 2005, pp.119-128.
DOI: 10.1007/s10910-005-4837-6
Google Scholar
[4]
Lemin zhu and Xuncheng Huang. Multiple limit cycles in a continuous culture vessel with variable yield[J]. Nonlinear Analysis vol. 64, 2006, pp.887-894.
DOI: 10.1016/j.na.2005.05.049
Google Scholar
[5]
Lemin zhu, Xuncheng Huang, Houqin Su. Bifurcation for a functional yield chemostat when one competitor produces a toxin[J]. J. Math. Anal. Appl. vol. 329, 2007, pp.891-903.
DOI: 10.1016/j.jmaa.2006.06.062
Google Scholar
[6]
Xuncheng Huang, Lemin zhu, Edward H.C. Chang, limit cycles in a chemostat with general variable yields and growth rates[J]. Nonlinear Analysis, vol. 8, 2007, pp.165-173.
DOI: 10.1016/j.nonrwa.2005.06.007
Google Scholar
[7]
L. Cha, B.R. Levin, Structured habitats and the evolution of anti-competitor toxins in bacteria[J]. Proc. Nat. Acad. Sci., vol. 75, 1981, pp.6324-6335.
Google Scholar
[8]
B. R. Levin, Frequency-dependent selection in bacterial populations[J]. Phil. Trans. R. Soc. London. vol. 319, 1988, pp.459-4711.
Google Scholar
[9]
R. E. Lenski, S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics[J]. J. Theoretic. Biol. vol. 122, 1986, pp.83-112.
DOI: 10.1016/s0022-5193(86)80226-0
Google Scholar
[10]
Hsu S. B. P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor[J]. SIAM J. Appl. Math. vol. 52, 1992, pp.528-540.
DOI: 10.1137/0152029
Google Scholar
[11]
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor[J]. Math. Biosci. vol. 187, 2004, pp.53-91.
Google Scholar
[12]
Lemin zhu, Xuncheng Huang, Houqin Su, Bifurcation for a functional yield chemostat when one competitor produces a toxin[J]. J. Math. Anal. Appl. vol. 29, 2007, pp.891-903.
DOI: 10.1016/j.jmaa.2006.06.062
Google Scholar
[13]
W.M. Hirsh, H. Hanish, and J.P. Gabiel, Differential equation model of some parasitic infections: methods for the study of asymptotic behavior[J]. Comm. Pure. Appl. Math. vol. 38, 1985, pp.35-47.
DOI: 10.1002/cpa.3160380607
Google Scholar
[14]
K. Golpalsamy, Stability and Oscillations in delay differential equations of populations dynamics[M], Kluwer Academic publishers, Dordrecht, (1992).
Google Scholar
[15]
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations[J]. J. Math. Biol. vol. 30, 1992, pp.755-763.
DOI: 10.1007/bf00173267
Google Scholar