A Competition Chemostat with General Variable Yield and Growth Rates in the Presence of a Internal Inhibitor

Article Preview

Abstract:

This paper considered two organisms competing for a nutrient in the chemostat in the presence of an inhibitor, where the yields and growth rates are general increasing function of the nutrient concentration. The inhibitor is produced by one organisms and is lethal to the other organism. By the theory of qualitative analysis for ordinary equations, first, conditions of the existence and local stability of the rest points are obtain; then the global asymptotical stability, the existence of limit cycles and Hopf bifurcation are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-293

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.S. Crook, R.D. Tanner, Hopf bifurcation for a variable yield continuous fermentation model, Int.J. Eng. Sci., vol. 20, 1982, pp.439-443.

Google Scholar

[2] X. Huang, Limit cycles in a continuous fermentation model[J]. J. Math. Chem. vol. 5, 1990, pp.287-296.

Google Scholar

[3] Lemin zhu, Xuncheng Huang. Relative positions of limit cycles in the continuous vessel with variable yield[J]. J. Math. Chem. vol. 38, 2005, pp.119-128.

DOI: 10.1007/s10910-005-4837-6

Google Scholar

[4] Lemin zhu and Xuncheng Huang. Multiple limit cycles in a continuous culture vessel with variable yield[J]. Nonlinear Analysis vol. 64, 2006, pp.887-894.

DOI: 10.1016/j.na.2005.05.049

Google Scholar

[5] Lemin zhu, Xuncheng Huang, Houqin Su. Bifurcation for a functional yield chemostat when one competitor produces a toxin[J]. J. Math. Anal. Appl. vol. 329, 2007, pp.891-903.

DOI: 10.1016/j.jmaa.2006.06.062

Google Scholar

[6] Xuncheng Huang, Lemin zhu, Edward H.C. Chang, limit cycles in a chemostat with general variable yields and growth rates[J]. Nonlinear Analysis, vol. 8, 2007, pp.165-173.

DOI: 10.1016/j.nonrwa.2005.06.007

Google Scholar

[7] L. Cha, B.R. Levin, Structured habitats and the evolution of anti-competitor toxins in bacteria[J]. Proc. Nat. Acad. Sci., vol. 75, 1981, pp.6324-6335.

Google Scholar

[8] B. R. Levin, Frequency-dependent selection in bacterial populations[J]. Phil. Trans. R. Soc. London. vol. 319, 1988, pp.459-4711.

Google Scholar

[9] R. E. Lenski, S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics[J]. J. Theoretic. Biol. vol. 122, 1986, pp.83-112.

DOI: 10.1016/s0022-5193(86)80226-0

Google Scholar

[10] Hsu S. B. P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor[J]. SIAM J. Appl. Math. vol. 52, 1992, pp.528-540.

DOI: 10.1137/0152029

Google Scholar

[11] S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor[J]. Math. Biosci. vol. 187, 2004, pp.53-91.

Google Scholar

[12] Lemin zhu, Xuncheng Huang, Houqin Su, Bifurcation for a functional yield chemostat when one competitor produces a toxin[J]. J. Math. Anal. Appl. vol. 29, 2007, pp.891-903.

DOI: 10.1016/j.jmaa.2006.06.062

Google Scholar

[13] W.M. Hirsh, H. Hanish, and J.P. Gabiel, Differential equation model of some parasitic infections: methods for the study of asymptotic behavior[J]. Comm. Pure. Appl. Math. vol. 38, 1985, pp.35-47.

DOI: 10.1002/cpa.3160380607

Google Scholar

[14] K. Golpalsamy, Stability and Oscillations in delay differential equations of populations dynamics[M], Kluwer Academic publishers, Dordrecht, (1992).

Google Scholar

[15] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations[J]. J. Math. Biol. vol. 30, 1992, pp.755-763.

DOI: 10.1007/bf00173267

Google Scholar