Study of Adsorption Properties of O2, CO2, NO2 and SO2 on Si-Doped Carbon Nanotube Using Density Functional Theory

Article Preview

Abstract:

We report reactivity of silicon doped single walled carbon nanotube (Si-CNT) towards the small atmospheric gas molecules O2, CO2, SO2 and NO2 using density functional theory based on the numerical basis set method. The reactivity of these molecules is explained on the basis of electronic properties such as binding energy, charge density, charge transfer and density of states. The large change in binding energy and formation of sigma (σ) bonds between silicon and oxygen atoms shows the strong chemisorption of the molecules on Si-CNT. Further, the density of states analysis clearly illustrate the reduction in the band gap and creation of extra state near the Fermi level, which acts as a catalytic center for adsorption of the molecules. The Mulliken population analysis indicates the charge transfer from Si-CNT to the molecules due to their more electronegativity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-320

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ijima, Nature (London), 354, 1991, pp.56-58.

Google Scholar

[2] J. W. Wildor and L. C. Venema, Nature (Lodon). 391, 1998, pp.59-61.

Google Scholar

[3] O. Gulseren and T. Yildirim, Phys. Rev. B. 65, 2002, pp.153405-4.

Google Scholar

[4] U. Ozgur and Alivov, App. Phy. Rev. 98, 2005, pp.041301-103.

Google Scholar

[5] J. Kong, Science, 287, 2000, pp.622-625.

Google Scholar

[6] P. G. Collins, Science, 287, 2000, pp.1801-1804.

Google Scholar

[7] S. H. Jhi, Phys. Rev. Lett. 85, 2000, pp.1710-1713.

Google Scholar

[8] S. Peng and K. J. Cho, Nanotechnology, 11, 2000, pp.57-60.

Google Scholar

[9] Jijun Zhao and Alper Buldum, Nanotechnology, 13, 2002, pp.195-200.

Google Scholar

[10] P. Giannozzi, Chem. Phys, 118, 2003, pp.1003-1006.

Google Scholar

[11] S. Dag, Phy. Rev. B, 67, 2003, pp.165424-165433.

Google Scholar

[12] Wai-Leung Yim, J. Phys. Chem. B, 107, 2003, pp.9363-9369. S. Peng, Chem. Phys. Lett. 387, 2004, pp.271-276.

Google Scholar

[13] Guanlun Guo. and Fang wang, I. J. Quantum Chemistry 108, 2008, pp.203-209.

Google Scholar

[14] A.C. Dillon and K. M. Jones, Nature, 386, 1997, pp.377-379.

Google Scholar

[15] H. N. Chang App. Phy. Lett ; 79, 2001, pp.3863-3865.

Google Scholar

[16] T. Yildirim, Phys. Rev. B ; 64, 2001, pp.075404-075408.

Google Scholar

[17] J. Kong, Appl. Phys. Lett; 80, 2002, pp.73-75.

Google Scholar

[18] J. Kong, Adv. Mater; 13, 2001, pp.1384-1386.

Google Scholar

[19] S. Peng and K. Cho, Nano. Lett; 3, 2003, pp.513-517.

Google Scholar

[20] Q. Zhao Nano. Lett ; 5, 2005, pp.847-851.

Google Scholar

[21] S. B. Fagan, Phys. Rev. B, 67, 2003, pp.33405-33408.

Google Scholar

[22] J. Haihui, Nanotechnology, 20, 2009, pp.145501-145507.

Google Scholar

[23] B. J. Delley, Chem. Phys; 113, 2000, p.7756.

Google Scholar

[24] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett; 77, 1996, p.3865.

Google Scholar

[25] B. Delley, Modern Density Functional Theory; A tool for Chemistry, (1995).

Google Scholar

[26] Fenglei Cao J. Phys. Chem. C, 114, 2010, p.970–976.

Google Scholar