Modeling of Weld Dilution in Gas Metal Arc Welding Process Using Taguchi's Design of Experiments

Abstract:

Article Preview

Gas metal arc welding is a fusion welding process which has got wide applications in industry. In order to obtain a good quality weld, it is therefore, necessary to control the input welding parameters. In other words proper selection of input welding parameters in this process contribute to weld productivity. One of the important welding output parameters in this process is weld dilution affecting the quality and productivity of weldment. In this research paper using Taguchi method of design of experiments a mathematical model was developed using parameters such as, wire feed rate (W), welding voltage (V), nozzle-to-plate distance (N), welding speed (S) and gas flow rate (G) on weld dilution. After collecting data, signal-to-noise ratios (S/N) were calculated and used in order to obtain the optimum levels for every input parameter. Subsequently, using analysis of variance the significant coefficients for each input factor on the weld dilution were determined and validated. Finally a mathematical model based on regression analysis for predicting the weld dilution was obtained. Results show that wire feed rate (W),arc voltage (V) have increasing effect while Nozzle-to-plate distance (N) and welding speed (S) have decreasing effect on the dilution whereas gas Flow rate alone has almost no effect on dilution but its interaction with other parameters makes it quite significant in increasing the weld dilution

Info:

Periodical:

Edited by:

Wu Fan

Pages:

2963-2968

DOI:

10.4028/www.scientific.net/AMM.110-116.2963

Citation:

M. Aghakhani et al., "Modeling of Weld Dilution in Gas Metal Arc Welding Process Using Taguchi's Design of Experiments", Applied Mechanics and Materials, Vols. 110-116, pp. 2963-2968, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.