Analysis of Radiative Heat Flux for Nozzle Flow

Article Preview

Abstract:

— A finite volume method with non-gray gas model is applied to investigate radiative heat flux on the inside wall of nozzle. The radiative properties of non-gray gas are predicted by using weighted sum of gray gases model (WSGGM). Again, 4 gray gases and narrow band based WSGGM is used to predict total heat flux and spectral intensity on the nozzle wall. Finally, the hybrid use of 4 gray gases and narrow band based model is applied to reduce computational time preserving accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3025-3030

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. S. Jamaluddin, P. J. Smith, Predicting radiative transfer in axisymmetric cylindrical enclosures using the discrete ordinates method,. Combust Sci Tech, vol. 62, 1988, p.173–186.

DOI: 10.1080/00102208808924008

Google Scholar

[2] S. W. Baek, T. Y. Kim, J. S. Lee, Transient cooling of a finite cylindrical medium in the rarefied cold environment, Int. J. Heat and Mass Transfer, vol. 36. 1993, p.3949–3956.

DOI: 10.1016/0017-9310(93)90145-v

Google Scholar

[3] E. H. Chui, G. D. Raithby and P. M. J. Hughes, Prediction of radiaitve transfer in cylindrical enclosures with the finite volume method,. J. Thermophys Heat Trasnfer, Vol. 6, 1992, pp.605-611.

DOI: 10.2514/3.11540

Google Scholar

[4] T. F. Smith, Z. F. Shen and J. N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transfer, Vol. 104, 1982, pp.602-608.

DOI: 10.1115/1.3245174

Google Scholar

[5] O. J. Kim and T. H. Song, Data base of WSGGM-based spectral model for radiation properties of combustion products, Vol. 64, 2000, pp.379-394.

DOI: 10.1016/s0022-4073(99)00125-9

Google Scholar

[6] W. H. Park and T. K. Kim, Application of the weighted sum of gray gases model for nonhomogeneous gas mixtures having arbitrary compositions, Proceedings of Eurotherm73 on Computational Thermal Radiation in Participating Media, 2003, p.129–137.

Google Scholar

[7] E. Turkel, Preconditioning Technique in Computational Fluid Dynamics, Annu, Rev. Fluid Mech, vol. 31, 1999, pp.385-416.

DOI: 10.1146/annurev.fluid.31.1.385

Google Scholar

[8] A. J. Chorin, A Numerical Methods for Solving Incompressible Viscous Flow Problems, Journal of Computational Physics, vol. 2, 1967, pp.12-26.

DOI: 10.1016/0021-9991(67)90037-x

Google Scholar

[9] J. M. Weiss and W. A Smith, Preconditioning Applied to Variable and Constant Density Time-Accurate Flows on Unstructured Meshes, AIAA paper 94-2209, (1994).

DOI: 10.2514/6.1994-2209

Google Scholar

[10] J. S. Shuen, K. H. Chen and Y. Choi, A Coupled Implicit Method for Chemical Non-equilibrium Flows at All Speeds, J. Computational Physics, vol. 106, 1993, pp.306-318.

DOI: 10.1006/jcph.1993.1110

Google Scholar

[11] M. S Liou, A sequel to AUSM, Part II: AUSM+-up for All Speeds, J. Computational Physics, vol. 214, 2006, pp.137-170.

DOI: 10.1016/j.jcp.2005.09.020

Google Scholar

[12] M. J. Yu, S. W. Baek, and J. H. Park, An Extension of the Weighted Sum of Gray Gases Non-Gray Gas Radiation Model to a Two Phase Mixture of Non-Gray Gas with Particles,. International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp.1699-1713.

DOI: 10.1016/s0017-9310(99)00265-3

Google Scholar