Electron Spin in Quantum Hall Effect in AlxGa1-xas: D. C. Tsui's Data

Article Preview

Abstract:

The Hall resistivity in the layers of AlxGa1-xAs/Al0.32Ga0.68As is found to show plateaus at certain fractions which depend on the effective charge. The Hall resistivity formula ρxy=h/e2 has been modified to ρxy=h/[(1/2) ge2] so that the effective charge of the electron becomes, e*=(1/2) ge. The plateaus occur at the effective charge determined by g = (2j+1)/(2l+1). Some of the plateaus are explained to arise from the g values while some others require the use of Landau levels. The flux quantization is modified to include the effect of spin. When the samples are doped with aluminium, the clusters of Al atoms occur in the GaAs resulting into electron clusters in which the spin is NS with S=1/2 and N=101. The electron clusters form a temperature dependent plateau in the Hall resistivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3097-3102

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Li , D. R. Luhman , D. C. Tsui , L. N. Pfeiffer and K. W. West K W, Observation of reentrant phases induced by short-range disorder in the lowest Landau level of AlGaAs heterostructures, Phys. Rev. Lett. , Vol. 105, p.076803 (2010).

DOI: 10.1103/physrevlett.105.076803

Google Scholar

[2] K. N. Shrivastava, Byers and Yang's theorem on flux quantization, AIP Conf. Proc., Vol. 1250, pp.261-264 (2010).

Google Scholar

[3] K. N. Shrivastava K N, Negative spin quasiparticles in the quantum Hall effect, Phys. Lett. A , Vol. 326, pp.469-472 (2004).

DOI: 10.1016/j.physleta.2004.04.067

Google Scholar

[4] K. N. Shrivastava, Theory of quantum Hall effect: Effective fractional charge, in "Frontiers of fundamental physics 4, edited by B. G. Sidharth and M. V. Altaisky, Kluwer Academic/Plenum Pub. N. Y. (2001)pp.235-249.

DOI: 10.1007/978-1-4615-1339-1_23

Google Scholar

[5] R. B. Laughlin , Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. Vol. 50, pp.1395-1398 (1983).

DOI: 10.1103/physrevlett.50.1395

Google Scholar

[6] S. A. Trugman and S. Kivelson, Exact results for the fractional quantum Hall effect with general interactions, Phys. Rev. B Vol 31, p.5280 (1985).

DOI: 10.1103/physrevb.31.5280

Google Scholar

[7] F. Wilczek, Magnetic flux, angular momentum and statistics, Phys. Rev. Lett. 48, 1144 (1982).

DOI: 10.1103/physrevlett.48.1144

Google Scholar

[8] K. N. Shrivastava , Rational numbers of the fractionally quantized new states and their observation in fractionally quantized Hall effect Phys. Lett. A Vol. 113, 435 (1986); Vol. 115, 495(E)(1986).

DOI: 10.1016/0375-9601(86)90667-5

Google Scholar

[9] K. N. Shrivastava , Introduction to quantum Hall effect, ISBN 1-59033-419-1, Nova Sci. New York (2002).

Google Scholar

[10] K. N. Shrivastava, Spin-dependent charge of a quasiparticle in clusters in quantum Hall effect. Natl. Acad. Sci. Lett. Vol. 26, 159-161 (2003).

Google Scholar

[11] K. N. Shrivastava , Microwave absorption in Wigner crystals at high magnetic fields Natl. Acad. Sci. Lett. Vol. 28, pp.199-203(2005).

Google Scholar

[12] K. N. Shrivastava , Quantum Hall Effect: Expressions, Nova Science Publishers, New York, 2005, ISBN 1-59454-399-2.

Google Scholar

[13] K. N. Shrivastava, The mass of the electron in Shubnikov-de Haas effect: Spin-Charge locking, Natl. Acad. Sci. Lett. Vol 29, pp.195-200 (2006).

Google Scholar

[14] K. N. Shrivastava, Additional Dirac matrix in Quantum Hall effect, AIP Conf. Proc. Vol. 1017, pp.47-56(2008).

Google Scholar

[15] K. N. Shrivastava, The theory of the quantum Hall effect, AIP Conf. Proc., Vol. 1017, pp.422-428 (2008).

Google Scholar

[16] K. N. Shrivastava , Infrared of thin film graphene in a magnetic field and the Hall effect Proc. SPIE(USA) 7155, 71552F (2008).

Google Scholar

[17] K. N. Shrivastava, Byers and Yang's theorem on flux quantization, Proc. Conf. Honor C.N. Yang's 85th Birthday: Statistical Physics, High Energy, Condensed Matter and Mathematical Physics, ISBN: 9812794174, World Scientific Co. (Singapore) p.526 (2008).

DOI: 10.1142/9789812794185_0061

Google Scholar

[18] A. N. Rosli and K. N. Shrivastava , Von Klitzing's constant as a special case of generalized constants, AIP Conf. Proc. Vol. 1136, pp.469-473 (2009).

Google Scholar

[19] K. N. Shrivastava, Interpretation of fractions in quantum Hall effect: Wei Pan's data. AIP Conf. Proc. Vol. 1150 , pp.59-67 (2009).

Google Scholar

[20] K. N. Shrivastava, The derivation of the von Klitzing's constant, Natl. Acad. Sci. Lett. Vol 32, 243-249 (2009).

Google Scholar

[21] K. N. Shrivastava , The fractional quantum Hall effect: The cases of 5/2 and 12/5, AIP Conf. Proc. Vol. 1169, pp.48-54 (2009).

Google Scholar

[22] K. N. Shrivastava, Pfaffian States: Quantum Computation, AIP Conf. Proc. Vol. 1169, pp.241-246 (2009).

Google Scholar

[23] K. N. Shrivastava, Plateau-to-plateau phase transition in quantum Hall effect, AIP Conf. Proc. Vol. 1250, pp.27-30 (2010).

Google Scholar

[24] K. N. Shrivastava, Elementary theory of quantum Hall effect, Maejo International Journal of Science and Technology Vol. 02, pp.285-297 (2008).

Google Scholar

[25] K. N. Shrivastava , The value of h/e2 from quantum Hall effect, Maejo Int. J. Sci. Technol Vol 4, pp.20-32. (2010).

Google Scholar

[26] M. Stern, P. Plochocka, V. Umansky, D. K. Maude, M. Potemski and I. Bar-Joseph, Phys. Rev. Lett. Vol. 105, p.096801 (2010).

Google Scholar

[27] G. F. Giuliani, J. J. Quinn and S. C. Ying, Phys. Rev. B Vol. 28, pp.2969-2978 (1983).

Google Scholar