[1]
B. Borglum, Cell and Stack Development at Versa Power Systems, 10th Annual SECA Workshop, Pittsburgh, PA, July 15, (2009).
Google Scholar
[2]
M.C. Tucker, Progress in metal-supported solid oxide fuel cells: A review, J. Power Sources, Vol. 195, pp.4570-4582, (2010).
DOI: 10.1016/j.jpowsour.2010.02.035
Google Scholar
[3]
M.C. Tucker, T.Z. Sholklapper, and G.Y. Lau, Progress of metal-supported SOFCs, 216th ECS meeting, Australia, Vol. 25, pp.673-680, (2009).
DOI: 10.1149/1.3205581
Google Scholar
[4]
C. Lee, and J. Bae, Fabrication and characterization of metal-supported solid oxide fuel cells, J. Power Sources, Vol. 176, pp.62-69, (2008).
DOI: 10.1016/j.jpowsour.2007.10.067
Google Scholar
[5]
J. Joo, and G. Choi, Simple fabrication of micro-solid oxide fuel cell supported on metal substrate, J. Power Sources, Vol. 2, pp.589-593, (2008).
DOI: 10.1016/j.jpowsour.2008.03.089
Google Scholar
[6]
Q.A. Huang, J. Oberste-Berghaus, and R. Hui et al., Polarization analysis for metal-supported SOFCs from different fabrication processes, J. Power Sources, Vol. 177, pp.339-347, (2008).
DOI: 10.1016/j.jpowsour.2007.11.092
Google Scholar
[7]
R. Hui, J. Berghaus, C. Decès-Petit, W. Qu, S. Yicka, J. Legoux, and C. Moreau, High performance metal-supported solid oxide fuel cells fabricated by thermal spray, J. Power Sources, Vol. 191, pp.371-376, (2009).
DOI: 10.1016/j.jpowsour.2009.02.067
Google Scholar
[8]
N.P. Brandon, D. Corcoran, and D. Cummins et al., Development of metal supported solid oxide fuel cells for operation at 500-600℃, Journal of Materials Engineering and Performance, Vol. 13, pp.253-256, (2004).
DOI: 10.1361/10599490419135
Google Scholar
[9]
P. Huczkowski, N. Christiansen, and V. Shemet et al., Oxidation limited life times of chromia forming ferritic steels, Materials and Corrosion, Vol. 55, pp.825-830, (2004).
DOI: 10.1002/maco.200303798
Google Scholar
[10]
M. Brandner, M. Bram, J. Froitzheim, H. P. Buchkremer, and D. Stover, Electrically Conductive Diffusion barrier layers for Metal-Supported SOFC, Solid State Ionics, Vol. 27-32, pp.1501-1504, (2008).
DOI: 10.1016/j.ssi.2008.03.002
Google Scholar
[11]
D.M. England, and AV Virkar, Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed: part II, J. Electrochem. Soc. , Vol. 148, pp. A330-A338, (2001).
DOI: 10.1149/1.1354611
Google Scholar
[12]
Z.G. Yang, G.G. Xia, and M.S. Walker et al., High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient, International Journal of Hydrogen Energy, Vol. 32, pp.3770-3777, (2007).
DOI: 10.1016/j.ijhydene.2006.08.056
Google Scholar
[13]
Y.B. Matusa, L.C. Jonghe De, and C.P. Jacobsonb et al., Metal-supported solid oxide fuel cell membranes for rapid thermal cycling, Solid State Ionics, Vol. 176, pp.443-449, (2005).
DOI: 10.1016/j.ssi.2004.09.056
Google Scholar
[14]
I. Antepara, I Villarreal, and LM Rodríguez-Martínez et al., Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs, J. Power Sources, Vol. 151, pp.103-107, (2005).
DOI: 10.1016/j.jpowsour.2005.02.084
Google Scholar
[15]
M.C. Tucker, G. Lau, C. Jacobson, L. DeJonghe, and S. Visco, Performance of metal-supported SOFCs with infiltrated electrodes, J. Power Sources, Vol. 171, pp.477-482, (2007).
DOI: 10.1016/j.jpowsour.2007.06.076
Google Scholar
[16]
Y.H. Kong, B. Hua, J. Pu, B. Chi, and J. Li, A cost-effective process for fabrication of metal-supported solid oxide fuel cells, International Journal of Hydrogen Energy, Vol. 35, pp.4592-4596, (2010).
DOI: 10.1016/j.ijhydene.2010.02.106
Google Scholar
[17]
M. Mantina, Y. Wang, R. Arroyave, L. Q. Chen, and Z. K. Liu, First-Principles Calculation of Self-Diffusion Coefficients, Physical Review Letter, Vol. 100, pp.21590-21593, (2008).
DOI: 10.1103/physrevlett.100.215901
Google Scholar