[1]
Badilita, V., Carlin, J.F., Ilegems, M., Rate-equation model for coupled-cavity surface- emitting lasers,. IEEE J. Quantum Electron., Vol. 40, No. 12, pp.1646-1656, (2004).
DOI: 10.1109/jqe.2004.837787
Google Scholar
[2]
Koyama, F., Miyamoto, T., Recent Advances of VCSEL Technologies, IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007, p.420 – 425.
DOI: 10.1109/iciprm.2007.381214
Google Scholar
[3]
Gatto, A., Boletti, A., Boffi, P, et. all, 1. 3-um VCSEL Transmission Performance up to 12. 5 Gb/s for Metro Access Networks, IEEE Photonics Technology Letters, Vol. 21, No. 12, pp.778-780, (2009).
DOI: 10.1109/lpt.2009.2016434
Google Scholar
[4]
Wong, E., Prasanna, A.G., Lim, C., et. All, 2009. Simple VCSEL Base-Station Configuration for Hybrid Fiber-Wireless Access Networks. IEEE Photonics Technology Letters, 21 (8): 534-536. [doi: 10. 1109/LPT. 2009. 2014393].
DOI: 10.1109/lpt.2009.2014393
Google Scholar
[5]
Huang, M.C.Y., Mateus, C.F.R., Foley, J.E., et. all, 2008. VCSEL Optoelectronic Biosensor for Detection of Infectious Diseases. IEEE Photonics Technology Letters, 20(6): 443-445. [doi: 10. 1109/LPT. 2008. 916947].
DOI: 10.1109/lpt.2008.916947
Google Scholar
[6]
Roscher, H., Rinaldi, F., Michalzik, R., 2007. Small-Pitch Flip-Chip-Bonded VCSEL Arrays Enabling Transmitter Redundancy and Monitoring in 2-D 10-Gbit/s Space-Parallel Fiber Transmission. IEEE J. Selected Topics in Quantum Electronics, 13(5): 1279-1289. [doi: 10. 1109/JSTQE. 2007. 905150].
DOI: 10.1109/jstqe.2007.905150
Google Scholar
[7]
Chao-Kun Lin, Tandon, A., Djordjev, K., et. all, High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects, IEEE J. Selected Topics in Quantum Electronics, Vol. 13, No. 5, pp.1332-1339, (2007).
DOI: 10.1109/jstqe.2007.906794
Google Scholar
[8]
Dayal, P.B., Nakajima, J., Sakaguchi, T., et. all, 2008. Multiple-wavelength VCSEL arrays using surface nano-machining process for WDM applications. 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008. 9-13 Nov: 400 – 401. [doi: 10. 1109/LEOS. 2008. 4688659].
DOI: 10.1109/leos.2008.4688659
Google Scholar
[9]
Schatz, R., Peeters, M., Isik, H., 2002. Impact of spatial hole burning on modulation response of vertical cavity surface emitting lasers. International Workshop on 4thLaser and Fiber-Optical Networks Modeling, 3-5 June: 108 – 111. [doi: 10. 1109/LFNM. 2002. 1014125].
DOI: 10.1109/lfnm.2002.1014125
Google Scholar
[10]
Verschaffelt, G., Craggs, G., Peeters, M., et. all, 2009. Spatially Resolved Characterization of the Coherence Area in the Incoherent Emission Regime of a Broad-Area Vertical-Cavity Surface-Emitting Laser. IEEE J. Quantum Electron., 45(3): 249-255. [doi: 10. 1109/JQE. 2009. 2013085].
DOI: 10.1109/jqe.2009.2013085
Google Scholar
[11]
Mei Ting Cha, Gordon, R., 2008. Spatially Filtered Feedback for Mode Control in Vertical-Cavity Surface-Emitting Lasers. IEEE J. Lightwave Technol., 26(24): 3893-3900. [doi: 10. 1109/JLT. 2008. 929122].
DOI: 10.1109/jlt.2008.929122
Google Scholar
[12]
Bahl, M., Panoiu, N.C., Osgood, R.M., 2005. Modeling ultrashort field dynamics in surface emitting lasers by using finite-difference time-domain method. IEEE J. Quantum Electron., 41(10): 1244-1252. [doi: 10. 1109/JQE. 2005. 855028].
DOI: 10.1109/jqe.2005.855028
Google Scholar
[13]
Mena, P. V., Morikuni, J. J., Kang, S. M., et. all, A Comprehensive Circuit-Level Model of Vertical-Cavity Surface-Emitting Lasers, IEEE J. Lightwave Technol., Vol. 17, No. 12, pp.2612-2632, (1999).
DOI: 10.1109/50.809684
Google Scholar