PFCHA: A New Moving Object Tracking Algorithms Based on Particle Filter and Histogram

Article Preview

Abstract:

The complexity of the video background of moving target tracking algorithm led to the robustness of the important reasons is not high for the limitations of existing algorithms, a framework based on the movement of particle filter tracking algorithm. In order to reduce the impact of occlusion for the algorithm, the algorithm of moving objects make full use of color and motion characteristics of moving target detection, and to avoid the interference of the complex background, within the framework of particle filter in the object color histogram analysis. Finally, given an effective comparison of the calculation. Experimental results show that particle filter based target tracking algorithm can effectively remove the interference of the complex background, the context for any trace detection of high robustness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3343-3350

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intlligence, 2003, 25(5): 564-575.

DOI: 10.1109/tpami.2003.1195991

Google Scholar

[2] Nummiaro K, Koller-Meier E, Van-Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.

DOI: 10.1016/s0262-8856(02)00129-4

Google Scholar

[3] Conaire C, Connor N. Thermo-visual feature fusion for object tracking using multiple spectrogram trackers [A]. In: Proceedings of Conference on Machine Vision and Applications[C], New York, NY, USA, 2007: 483-494.

DOI: 10.1007/s00138-007-0078-y

Google Scholar

[4] Perez P, Vermask J, Blake A. Data fusion for visual tracking with particles [J]. Proceedings of the IEEE, 2004, 92(3): 495-513.

DOI: 10.1109/jproc.2003.823147

Google Scholar

[5] Brasnett P, Mihayhova L, Bull D. Sequential Monte carol tracking by fusing multiple cues in video sequences [J]. Image Vision Computing 2007, 25(8): 1217-1227.

DOI: 10.1016/j.imavis.2006.07.017

Google Scholar

[6] Serby D, Koller-Meier E, Van-Gool L. Probabilistic object tracking using multiple features [A]. In: Proceedings of 17th International Conference on Pattern Recognition[C], Cambridge, UK, 2004: 184-187.

DOI: 10.1109/icpr.2004.1334091

Google Scholar

[7] Pitt M, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American statistical Association, 1999, 94(446): 590-599.

DOI: 10.1080/01621459.1999.10474153

Google Scholar

[8] Birchfield S, Sriram R. Spectrograms versus histograms for region based tracking [A]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C], San Diego, CA, USA, 2005: 1158-1163.

DOI: 10.1109/cvpr.2005.330

Google Scholar

[9] WANG Huan, WANG Jiang-tao, REN Ming-wu, YANG Jing-yu. A New Robust Object Tracking Algorithm by Fusing Multi-features[J]. Journal of Image and Graphics. 2009(14): 489-498.

Google Scholar

[10] S.S. Blackman. Multiple hypothesis tracking for multiple target tracking. Aerospace and Electronic Systems Magazine, IEEE, vol. 19, no. 2(2004): 143-155.

DOI: 10.1109/maes.2004.1263228

Google Scholar

[11] Karagiannis T, Papagiannaki K. BLINC multi-level traffic classification in the dark[J]. Computer Communication Review, 2006, 25(4): 23-24.

Google Scholar