[1]
Portigal D L and Burstein E, Acoustic Activity and Other First Spatical Dispersion Effects in Crystals, J. Phys. Rev., 1968, 170, p.673.
DOI: 10.1103/physrev.170.673
Google Scholar
[2]
Kumaraswamy K. and Krishnamurthy N, The Acoustic Gyrotropic Tensor in Crystals, J. Acta Cryst, 1980, A36, pp.760-762.
DOI: 10.1107/s0567739480001532
Google Scholar
[3]
K.V. Bhagwat and R. Subramanian, A New Fourth-Rank Tensor for Describing the Acoustical Activity of Crystals, J. Phys. C: Solid State Phys., 1986, 19, pp.345-357.
DOI: 10.1088/0022-3719/19/3/005
Google Scholar
[4]
K.V. Bhagwat, Acoustical Activity in the Framework of the Rotation-Gradient Theory of Elasticity, Phys RevB., 1986, 33(8) , pp.5795-5800.
DOI: 10.1103/physrevb.33.5795
Google Scholar
[5]
T.P. Srinivasan, A Description of Acoustical Activity Using Irreducible Tensors, , J. Phys. C: Solid State Phys, 1988, 21, pp.4207-4219.
DOI: 10.1088/0022-3719/21/23/007
Google Scholar
[6]
Rama Mohana Rao K and Hemagiri Rao P, Acoustic Gyrotropic Tensor in Quasicrystals, J. Acoust. Soc. Am., 1996, 99(4), pp. (1958).
Google Scholar
[7]
Orson L. Anderson, Donald Isaak and Hitoshi Oda, High-temperature elastic constant data on minerals relevant to geophysics, Reviews of Geophysics, 1992, 30( 1), pp.57-90.
DOI: 10.1029/91rg02810
Google Scholar
[8]
Kwiseon Kim, Walter R. L. Lambrecht, and Benjamin Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Phys. Rev., 1996, B 53, p.16310–16326.
DOI: 10.1103/physrevb.53.16310
Google Scholar
[9]
M.F. -X. Wagner and W. Windl, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Materialia, 2008, 56(20), pp.6232-6245.
DOI: 10.1016/j.actamat.2008.08.043
Google Scholar
[10]
Wang H L and Jiang S L, Rotation Invariance of Second Order Nonlinear Elasto-optic Tensor, Journal of synthetic crystals, 2009, 38(3), pp.788-802.
Google Scholar
[11]
Long C G and Jiang S L, Axial Rotation Symmetry of Third-order Nonlinear Elasti ity of Qu sicrystals, Journal of synthetic crystals, 2006, 35(2), pp.299-301.
Google Scholar
[12]
Wang H L, Jiang S L and Liu Y H, The Progress of Interdisciplinary Research For Mathematics, Mechanics, Physics and High New Technology, 2010(13), pp.586-590.
Google Scholar
[13]
Fumi F G and Ripamonti C, Tensor Properties and Roatational Symmetry of Crystals, Acta. Cryst, 1980, A36, pp.535-551.
Google Scholar
[14]
Jiang S L and Hua B Y, Spatial Axial Rotation Symmetry of Physical Properties of Crystals, Journal of Synthetic Crystals, 1998, 27(1), pp.14-19.
Google Scholar