Quantum Spectra and Classical Orbits in Artificial Atom

Article Preview

Abstract:

We define a quantum spectrum function using the eigenvalues and the eigenfunctions in the system of two-dimensional artificial atom. We find that the Fourier transform of the quantum spectrum function reveals a lot of information of the classical closed orbits and the classical opened orbits from one point to another. These results give new evidence about the classical-quantum correspondence.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3316-3321

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. C. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys., vol. 12, pp.343-358, (1971).

Google Scholar

[2] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics. New York: Springer-Verlag, (1990).

Google Scholar

[3] D. Kleppner and J. B. Delos, Beyond quantum mechanics: insights from the work of Martin Gutzwiller, Found. Phys. vol. 31, pp.593-612, (2001).

Google Scholar

[4] M. L. Du and J. B. Delos, Effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field, Phys. Rev. Lett. vol. 58, pp.1731-1733, (1987).

DOI: 10.1103/physrevlett.58.1731

Google Scholar

[5] M. L. Du and J. B. Delos, The effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field I. Physical picture and calculations, Phys. Rev. A, vol. 38, pp.1896-1912, (1988).

DOI: 10.1103/physreva.38.1896

Google Scholar

[6] M. L. Du and J. B. Delos, The effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field II. Derivation of formulas, Phys. Rev. A, vol. 38, pp.1913-1930, (1988).

DOI: 10.1103/physreva.38.1913

Google Scholar

[7] D. A. Sadovskii, J. A. Shaw, and J. B. Delos, Organization of sequences of bifurcations of periodic orbits, Phys. Rev. Lett., vol. 75, pp.2120-2123, (1995).

DOI: 10.1103/physrevlett.75.2120

Google Scholar

[8] P. A. Dando, T. S. Monteiro, and S. M. Owen, Periodic orbit theory for Rydberg atoms in external fields, Phys. Rev. Lett., vol. 75, pp.2797-2800, (1998).

DOI: 10.1103/physrevlett.80.2797

Google Scholar

[9] A. Matzkin, P. A. Dando, and T. S. Monteiro, Closed-orbit theory for molecules in fields, Phys. Rev. A, vol. 66, p.013410, (2002).

DOI: 10.1103/physreva.66.013410

Google Scholar

[10] M. R. Haggerty and J. B. Delos, Recurrence spectroscopy in time-dependent fields, Phys. Rev. A, vol. 61, p.053406, (2000).

Google Scholar

[11] J. Main and V. A. Mandelshtam, and H. S. Taylor, Periodic orbit quantization by harmonic inversion of Gutzwiller's recurrence function, Phys. Rev. Lett., vol. 79, pp.825-828, (1997).

DOI: 10.1103/physrevlett.79.825

Google Scholar