Inverse Kinematics with 3-Dimensational Tool Compensation for 5-Axis Machine Center of Tilting Rotary Table

Article Preview

Abstract:

The purpose of this paper is to develop a tool radius compensation method for a 5-axis horizontal machine center with a tilting rotary table. The generalized expression is presented first to determine the cutting contact location for any type of milling tools. The spindle orientation solved from a closed form of the inverse kinematics is applied for generating the postprocessor, and a compensating procedure is implemented to verify the offset path.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3525-3533

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. J. Chiou and Y. S. Lee, A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models, Comput Aided D, vol. 31, Oct. 1999, p.761–776, doi: 10. 1016/S0010-4485(99)00069-X.

DOI: 10.1016/s0010-4485(99)00069-x

Google Scholar

[2] C. G. Jensen, W. E. Red, and J. Pi, Tool Selection for Five-Axis Curvature Matched Machining, Comput Aided D, vol. 34, Mar. 2002, p.251–266, doi: 10. 1016/S0010-4485(01)00086-0.

DOI: 10.1016/s0010-4485(01)00086-0

Google Scholar

[3] C. S. Jun, K. Cha, and Y. S. Lee, Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method, Comput Aided D, vol. 35, May 2003, p.549–566, doi: 10. 1016/S0010-4485(02)00077-5.

DOI: 10.1016/s0010-4485(02)00077-5

Google Scholar

[4] K. L. Chui, W. K. Chiu, and K. M. Yu, Direct 5-Axis Tool-Path Generation from Point Cloud Input Using 3D Biarc Fitting, Robot Comput Integr Manuf, vol. 24, Apr. 2008, pp.270-286, doi: 10. 1016/j. rcim. 2006. 11. 004.

DOI: 10.1016/j.rcim.2006.11.004

Google Scholar

[5] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou, and T. Tar, A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers, J Manuf Syst, vol. 16, 1997, pp: 422–436, doi: 10. 1016/S0278-6125(97)81735-9.

DOI: 10.1016/s0278-6125(97)81700-1

Google Scholar

[6] S. P. Radzevich, Conditions of Proper Sculptured Surface Machining, Comput Aided D, vol. 34, Sep. 2002, p.727–740, doi: 10. 1016/S0010-4485(01)00202-0.

DOI: 10.1016/s0010-4485(01)00202-0

Google Scholar

[7] R. Gian, T. W. Lin, and A. C. Lin, Planning of Tool Orientation for Five-Axis Cavity Machining, Int J Adv Manuf Technol, vol. 22, Sep. 2003, pp.150-160, doi: 10. 1007/s00170-002-146-6.

DOI: 10.1007/s00170-002-1460-6

Google Scholar

[8] E. Ozturk, L. T. Tunc, and E. Budak, Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes, Int J Mach Tools Manuf, vol. 49, Nov. 2009, pp.1053-1062, doi: 10. 1016/j. ijmachtools. 2009. 07. 013.

DOI: 10.1016/j.ijmachtools.2009.07.013

Google Scholar

[9] Y. Takeuchi and T. Watanabe, Generation of 5-Axis Control Collision-Free Tool Path and Postprocessing for NC Data, Ann CIRP, vol. 41, 1992, p.539–542.

DOI: 10.1016/s0007-8506(07)61263-3

Google Scholar

[10] R. S. Lee and C. H. She, Developing A Postprocessor for Three Types of Five-Axis Machine Tools, Int J Adv Manuf Technol, vol. 13, Sep. 1997, p.658–665, doi: 10. 1007/BF01350824.

DOI: 10.1007/bf01350824

Google Scholar

[11] E. L. J. Bohez, Five-Axis Milling Machine Tool Kinematic Chain Design and Analysis, Int J Mach Tools Manuf, vol. 42, Mar. 2002, p.505–520, doi: 10. 1016/S0890-6955(01)00134-1.

DOI: 10.1016/s0890-6955(01)00134-1

Google Scholar

[12] K. Sorby, Inverse Kinematics of Five-Axis Machines Near Singular Configurations, Int J Mach Tools Manuf, vol. 47, Feb. 2007, pp.299-306, doi: 10. 1016/j. ijmachtools. 2006. 03. 011.

DOI: 10.1016/j.ijmachtools.2006.03.011

Google Scholar

[13] C. H She and Z. T. Huang, Postprocessor Development of A Five-Axis Machine Tool with Nutating Head and Table Configuration, Int J Adv Manuf Technol, vol. 38, Sep. 2008, p.728–740, doi: 10. 1007/s00170-007-1126-5.

DOI: 10.1007/s00170-007-1126-5

Google Scholar

[14] Heidenhain, TNC, User's Manual ISO Programming 410/426/430, 2000, pp.111-115.

Google Scholar

[15] Fanuc, Fanuc Series 16/18-MC, 2001, pp.342-347.

Google Scholar

[16] Simens, Simumerik 840D/840D1/810D Advanced Programming Guide, 2002, pp.328-340.

Google Scholar

[17] DIN, DIN 66215: CLDATA. NC-Maschinen, Berlin, Beuth Verlage, (1987).

Google Scholar

[18] C . Tung and P. L. Tso, A Generalized Cutting Location Expression and Postprocessors for Multi-Axis Machine Centers with Tool Compensation, Int J Adv Manuf Technol, vol. 50, Oct. 2010, p.1113–1123, doi: 10. 1007/s00170-010-2582-x.

DOI: 10.1007/s00170-010-2582-x

Google Scholar

[19] T. C. Chang, R. A. Wysk, and H. P. Wang, Computer-Aided Manufacturing, 2nd ed., Prentice Hall, 1998, pp.369-378.

Google Scholar

[20] MAKINO, URL: http: /www. makino. com/machines.

Google Scholar

[21] OKK, URL: http: /www. okkcorp. com.

Google Scholar

[22] J. Denavit and R. S. Hartenberg, A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, J Appl Mech, vol. 22, 1955, p.215–221.

DOI: 10.1115/1.4011045

Google Scholar

[23] B. K. Choi and R. B. Jerard, Sculptured Surface Machining Theory and Applications, Kulwer Academic, 1998, pp.26-30.

Google Scholar