[1]
T. Yamamoto and Y. Ishida, Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications, Wiley & sons, (2001).
Google Scholar
[2]
F. Ehrich, Handbook of Rotor Dynamics, Krieger, Malabar, (1999).
Google Scholar
[3]
M. Lalanne and G. Ferraris, Rotordynamics Prediction in Engineering, second ed., John Wiley & sons, (1998).
Google Scholar
[4]
F. Ehrich, Observations of nonlinear phenomena in rotordynamics, journal of system design and dynamics, vol. 2 (3), 2008, pp.641-651.
DOI: 10.1299/jsdd.2.641
Google Scholar
[5]
N. Driot, C.H. Lamarque, and A. Berlioz, Theoretical and Experimental Analysis of a Base Excited Rotor, ASME Journal of Computational and Nonlinear Dynamics, Trans of ASME, vol. 1 (4), July 2006, pp.257-263.
DOI: 10.1115/1.2209648
Google Scholar
[6]
M. Duchemin, A. Berlioz, and G. Ferraris, Dynamic behavior and stability of a rotor under base excitations, Journal of Vibration and Acoustics, vol. 128 (5), 2006, pp.576-585.
DOI: 10.1115/1.2202159
Google Scholar
[7]
N. Driot, A. Berlioz, and C. H. Lamarque, Stability and Stationary Response of a Skew Jeffcott Rotor With Geometric Uncertainty, ASME Journal of Computational and Nonlinear Dynamics, Trans of ASME, vol. 4 (2), (2009).
DOI: 10.1115/1.3079683
Google Scholar
[8]
J. Luczko, A geometrically nonlinear model of rotating shafts with internal resonance and self excited vibrations, Journal of Sound and Vibrations, vol. 255 (3), 2002, pp.433-456.
DOI: 10.1006/jsvi.2001.4164
Google Scholar
[9]
A.H. Nayfeh and D.T. Mook, Nonlinear Oscillations, Wiley, New York, (1979).
Google Scholar
[10]
A.H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, (1993).
Google Scholar
[11]
S. Hosseini and S. Khadem, Free vibration analysis of a rotating shaft with nonlinearities in curvature and inertia, Mechanism and Machine theory, vol. 44, 2009, pp.272-288.
DOI: 10.1016/j.mechmachtheory.2008.01.007
Google Scholar
[12]
G. Michon, L. Manin, R.G. Parker, and R. Dufour, Duffing Oscillator With Parametric Excitation: Analytical and Experimental Investigation on a Belt-Pulley System, Journal of Computational and Nonlinear Dynamics, Vol. 3, July (2008).
DOI: 10.1115/1.2908160
Google Scholar
[13]
H. Yabuno, Y. Kunitho, T. Inoue, and Y. Ishida, Nonlinear analysis of rotor dynamics by using method of multiple scales, Iutam Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty 2, part 3, 2007, pp.167-176.
DOI: 10.1007/978-1-4020-6332-9_17
Google Scholar
[14]
A.F. El-Bassiouny, Parametrically excited non-linear systems: a comparison of two models, Applied Mathematics and Computation, vol. 132, 2002, pp.385-410.
DOI: 10.1016/s0096-3003(01)00200-4
Google Scholar