Production of Transparent Heat Windows of TiO2/Ag/TiO2, and Investigation of their Nanostructures

Article Preview

Abstract:

Using the resistive heated method, TiO2/Ag/TiO2 thin files (Transparent heat windows) in vertical deposition angle were deposited on SiO2 substrate, in high vacuum (HV) condition and 100°c. The thickness of TiO2 on glass substrate was 50°A, Silver film 125°A and 225°A and the upper layer TiO2 with 115°A. All other deposition conditions were same for both samples .Atomic force microscope (AFM), and spectrophotometric methods were used to study the nanostructures of these samples in the range of FTIR. The purpose of this work is to find and produce the structure with the least energy waste.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3856-3859

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. L Chopra, S. Major , D.K. Pandya, Thiin Solid Films 102 (1983).

Google Scholar

[2] X. Liu, X. Cai, J. Mao, C. Jin, Appl. Surf. Sci. 183 (2001).

Google Scholar

[3] X. Liua, X. Caia, J. Qiaoa, J. Maob and N. Jiang, Thin Solid Films 441 (2003).

Google Scholar

[4] M. A Fox, M.T. Dualy, chem. Rev. 93 (1993) 341.

Google Scholar

[5] N. Venkatachalam, M. Palanichamy, V. Murugesan, Mater. Chem. Phys. 104(2007) 454.

Google Scholar

[6] A. Navrotsky, O.J. Kleppa,J. Am. Ceram. Soc. 50 (1967) 626.

Google Scholar

[7] P. Qu, J. Zhao, T. Shen, H. Hidaka, J. Mol. Catal. A: Chem. 129 (1998) 257.

Google Scholar

[8] R. Libanori, T.R. Giraldi, E. Longo, E.R. Leite, C. Riberio, J. Sol-Gel Sci. Technol. 49 (2009) 95.

Google Scholar

[9] H. Wang, Y. Wu, B.Q. Xu, Appl. Catal. B Environ. 59 (2005) 143.

Google Scholar

[10] A.L. Linsebigler, G.Q. Lu, T. Yates Jr., Chem. Rev. 95 (1995) 735.

Google Scholar

[11] J.R. Garbin, D.M.B.P. Milori, M.L. Simoes, W.T.L. da Silva. I Martin-Neto, Chemo sephere 66 (2007) 1692.

Google Scholar

[12] F. Sayilkan,M. Asilturk,P. Tatar,N. Kiraz,S. Sener,E. Arpac,H. Sayilkan. Mater. Res. Bull. 43 (2008) 127-134.

Google Scholar

[13] B.R. Sankapal S.D. Sartale, M.C. Lux-Steiner, A. Ennaui, C.R. Chimie 9 (2006) 702.

Google Scholar

[14] C. Ribeiro, C. Vila, J.M.E. Matos, J. Bettini, E. Longo, E.R. Leite, Chem. Eur. J. 13 (2007) 5798.

Google Scholar

[15] M. Boudart, G. Djega-Mariadasson, Kinetics of Heterogeneous Reaction, Princeton University Press, Princeton, (1981).

Google Scholar

[16] C. Ribeiro,C. Vila, D.B. Stroppa,J. Bettini, V.R. Mastelaro, E. Longo, E.R. Leite, J. Phys. Chem. C 111 (2007) 5871.

Google Scholar

[17] C.M. Ronconi, C. Ribeiro, L. O. S. Bulhoes, E.C. Pereira, J. Alloys Compd. 466 (2008) 435.

Google Scholar

[18] V. Subramanian, E. Wolf, P.V. Kamat, J. Phys. Chem. B 105 (2001) 11439.

Google Scholar

[19] G. Colon, M. Maicu, M.C. Hidalgo, J.A. Navio, Appl. Catal. B: Environ. 67 (2006) 41.

Google Scholar

[20] B. Xin,Z. Ren, H. Hu, X. Zhang, C. Dong, K. Shi, L. Jing, H. Fu, Appl. Surf. Sci. 252 (2005) (2050).

Google Scholar

[21] M. Anpo, M. Takeuchi, J. Catal. 216 (2003) 505.

Google Scholar

[22] H.W. Wang, H.C. Lin. C.H. Kuo, Y.L. Cheng, Y.C. Yeh, J. Phys. Chem. Solids 69(2008) 633.

Google Scholar