[1]
C. Oğuz, M.F. Ercan, T.C.E. Cheng, and Y.F. Fung, Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop, European Journal of Operational Research, vol. 149, 2003, pp.390-403.
DOI: 10.1016/s0377-2217(02)00766-x
Google Scholar
[2]
K-C Ying and S-W Lin, Scheduling multistage hybrid flowshops with multiprocessor tasks by an effective heuristic, International of Journal Production Research, vol. 47, 2009, p.35253538.
DOI: 10.1080/00207540701871085
Google Scholar
[3]
C. Oğuz, Y. Zinder, V.H. Do, A. Janiak, and M. Lichtenstein, Hybrid flow-shop scheduling problems with multiprocessor task systems, European Journal of Operational Research, vol. 152, 2004, pp.115-131.
DOI: 10.1016/s0377-2217(02)00644-6
Google Scholar
[4]
C. Oğuz and M.F. Ercan, A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks, Journal of Scheduling, vol. 8, 2005, pp.323-351.
DOI: 10.1007/s10951-005-1640-y
Google Scholar
[5]
K-C Ying and S-W Lin, Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system approach, International Journal of Production Research, vol. 44, 2006, pp.3161-3177.
DOI: 10.1080/00207540500536939
Google Scholar
[6]
F.S. Serifoglu and G. Ulusoy, Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach, Journal of the Operational Research Society, vol. 55, 2004, pp.504-512.
DOI: 10.1057/palgrave.jors.2601716
Google Scholar
[7]
C-T Tseng and C-J Liao, A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks, International Journal of Production Research, vol. 46, 2008, pp.4655-4670.
DOI: 10.1080/00207540701294627
Google Scholar
[8]
C. Kahraman, O. Engin, I. Kaya, R.E. Ozturk, Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach, Applied Soft Computing, 2010, doi: 10. 1016/j. asoc. 2010. 03. 08.
DOI: 10.1016/j.asoc.2010.03.008
Google Scholar
[9]
A. Jouglet, C. Oğuz, and M. Sevaux, Hybrid flow-shop: a memetic algorithm using constraintbased scheduling for efficient search, Journal of Mathematical Modeling and Algorithms, vol. 8, 2009, pp.271-292.
DOI: 10.1007/s10852-008-9101-1
Google Scholar
[10]
H. -M. Wang, F. -D. Chou, F. -C. Wu, A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan, International Journal of Advanced Manufacturing Technology, 2010, doi 10. 1007/s00170-010-2868-z. Table 1 : The results for problems with n=5 from Oğuz and Ercan [4] Type A Type B (n, k) No. LB newLB MIP Earlier solutions This paper Best LB newLB MIP Earlier solutions This paper Best (5, 2) 1 337 337 337* 337* 337* 337* 162 179 225* 225* 225* 225.
DOI: 10.1007/s00170-010-2868-z
Google Scholar
[2]
199 199 256* 256* 256* 256* 173 190 193* 193* 193* 193.
Google Scholar
[3]
261 262 308* 308* 308* 308* 236 280 285* 285* 285* 285.
Google Scholar
[4]
201 262 282* 282* 282* 282* 190 190 278* 278* 278* 278.
Google Scholar
[5]
267 267 267* 267* 267* 267* 261 289 316* 316* 316* 316.
DOI: 10.1515/9783110335293.267
Google Scholar
[6]
184 184 184* 184* 184* 184* 172 172 248* 248* 264 248.
DOI: 10.1037/13015-008
Google Scholar
[7]
157 174 174* 177 174* 174* 287 288 343* 343* 343* 343.
Google Scholar
[8]
315 315 315* 315* 315* 315* 162 179 225* 225* 225* 225.
DOI: 10.1093/nq/s7-ix.225.315c
Google Scholar
[9]
203 226 241* 241* 241* 241* 141 173 201* 201* 201* 201.
Google Scholar
[10]
235 281 306* 306* 306* 306* 171 191 221* 221* 221* 221* (5, 5) 1 404 430 439* 451 445 439* 370 370 464 464 464 464.
DOI: 10.1136/bmj.306.6875.464
Google Scholar
[2]
403 420 522* 522* 522* 522* 306 325 375 375 389 375.
Google Scholar
[3]
440 477 519* 519* 519* 519* 338 346 400* 400* 400* 400.
Google Scholar
[4]
374 374 499* 503 503 499* 281 294 354 356 356 354.
Google Scholar
[5]
458 458 499* 499* 499* 499* 341 341 449* 449* 449* 449.
DOI: 10.1017/9781108689687.010
Google Scholar
[6]
355 371 449* 449* 449* 449* 369 386 470 470 470 470.
DOI: 10.1515/9783110432916-005
Google Scholar
[7]
272 272 320* 320* 320* 320* 377 392 517 518 518 517.
Google Scholar
[8]
440 440 472* 482 472* 472* 253 310 342 342 342 342.
Google Scholar
[9]
359 359 445* 445* 459 445* 313 346 382* 406 404 382.
Google Scholar
[10]
419 437 502* 502* 502* 502* 310 310 431* 431* 431* 431* (5, 8) 1 576 576 607* 644 607* 607* 527 540 612 612 612 612.
DOI: 10.1038/nj7008-612c
Google Scholar
[2]
513 513 609* 629 625 609* 586 586 635 635 635 635.
Google Scholar
[3]
529 529 550* 554 566 550* 559 600 644 644 644 644.
Google Scholar
[4]
542 542 663* 695 667 663* 516 588 588* 588* 588* 588.
Google Scholar
[5]
500 569 616 646 616 616 522 522 620* 645 645 620.
Google Scholar
[6]
533 551 597* 624 624 597* 527 540 612 612 612 612.
Google Scholar
[7]
474 474 583 606 583 583 471 488 579* 601 588 579.
Google Scholar
[8]
621 621 686* 686* 686* 686* 432 443 472 484 484 472.
Google Scholar
[9]
539 539 656* 656* 656* 656* 532 562 638 654 654 638.
Google Scholar
[10]
524 553 600* 607 607 600* 511 511 599 599 599 599.
Google Scholar