Hybrid Flow Shop Scheduling Problems with Multiprocessor Tasks

Article Preview

Abstract:

Hybrid flow shop scheduling problems with multiprocessor tasks to minimize the makespan have been addressed and solved efficiently. Several approaches were used, including greedy methods and metaheuristics. In this paper, we proposed a mixed integer programming (MIP) model that can define explicitly and precisely the nature of a given problem. We also addressed a modified lower bound to obtain tighter bounds. Additionally, we propose different decoding methods and emphasize their importance in hybrid flow shop scheduling problems with multiprocessor tasks. By using existing test problems with n=5 in examining the proposed methods, many optimal solutions can be obtained as benchmarks for reference by the MIP model. Accordingly, the results are indicative of the influence of the decoding methods on the solutions to the hybrid flow shop problems with multiprocessor tasks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3914-3921

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Oğuz, M.F. Ercan, T.C.E. Cheng, and Y.F. Fung, Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop, European Journal of Operational Research, vol. 149, 2003, pp.390-403.

DOI: 10.1016/s0377-2217(02)00766-x

Google Scholar

[2] K-C Ying and S-W Lin, Scheduling multistage hybrid flowshops with multiprocessor tasks by an effective heuristic, International of Journal Production Research, vol. 47, 2009, p.35253538.

DOI: 10.1080/00207540701871085

Google Scholar

[3] C. Oğuz, Y. Zinder, V.H. Do, A. Janiak, and M. Lichtenstein, Hybrid flow-shop scheduling problems with multiprocessor task systems, European Journal of Operational Research, vol. 152, 2004, pp.115-131.

DOI: 10.1016/s0377-2217(02)00644-6

Google Scholar

[4] C. Oğuz and M.F. Ercan, A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks, Journal of Scheduling, vol. 8, 2005, pp.323-351.

DOI: 10.1007/s10951-005-1640-y

Google Scholar

[5] K-C Ying and S-W Lin, Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system approach, International Journal of Production Research, vol. 44, 2006, pp.3161-3177.

DOI: 10.1080/00207540500536939

Google Scholar

[6] F.S. Serifoglu and G. Ulusoy, Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach, Journal of the Operational Research Society, vol. 55, 2004, pp.504-512.

DOI: 10.1057/palgrave.jors.2601716

Google Scholar

[7] C-T Tseng and C-J Liao, A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks, International Journal of Production Research, vol. 46, 2008, pp.4655-4670.

DOI: 10.1080/00207540701294627

Google Scholar

[8] C. Kahraman, O. Engin, I. Kaya, R.E. Ozturk, Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach, Applied Soft Computing, 2010, doi: 10. 1016/j. asoc. 2010. 03. 08.

DOI: 10.1016/j.asoc.2010.03.008

Google Scholar

[9] A. Jouglet, C. Oğuz, and M. Sevaux, Hybrid flow-shop: a memetic algorithm using constraintbased scheduling for efficient search, Journal of Mathematical Modeling and Algorithms, vol. 8, 2009, pp.271-292.

DOI: 10.1007/s10852-008-9101-1

Google Scholar

[10] H. -M. Wang, F. -D. Chou, F. -C. Wu, A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan, International Journal of Advanced Manufacturing Technology, 2010, doi 10. 1007/s00170-010-2868-z. Table 1 : The results for problems with n=5 from Oğuz and Ercan [4] Type A Type B (n, k) No. LB newLB MIP Earlier solutions This paper Best LB newLB MIP Earlier solutions This paper Best (5, 2) 1 337 337 337* 337* 337* 337* 162 179 225* 225* 225* 225.

DOI: 10.1007/s00170-010-2868-z

Google Scholar

[2] 199 199 256* 256* 256* 256* 173 190 193* 193* 193* 193.

Google Scholar

[3] 261 262 308* 308* 308* 308* 236 280 285* 285* 285* 285.

Google Scholar

[4] 201 262 282* 282* 282* 282* 190 190 278* 278* 278* 278.

Google Scholar

[5] 267 267 267* 267* 267* 267* 261 289 316* 316* 316* 316.

DOI: 10.1515/9783110335293.267

Google Scholar

[6] 184 184 184* 184* 184* 184* 172 172 248* 248* 264 248.

DOI: 10.1037/13015-008

Google Scholar

[7] 157 174 174* 177 174* 174* 287 288 343* 343* 343* 343.

Google Scholar

[8] 315 315 315* 315* 315* 315* 162 179 225* 225* 225* 225.

DOI: 10.1093/nq/s7-ix.225.315c

Google Scholar

[9] 203 226 241* 241* 241* 241* 141 173 201* 201* 201* 201.

Google Scholar

[10] 235 281 306* 306* 306* 306* 171 191 221* 221* 221* 221* (5, 5) 1 404 430 439* 451 445 439* 370 370 464 464 464 464.

DOI: 10.1136/bmj.306.6875.464

Google Scholar

[2] 403 420 522* 522* 522* 522* 306 325 375 375 389 375.

Google Scholar

[3] 440 477 519* 519* 519* 519* 338 346 400* 400* 400* 400.

Google Scholar

[4] 374 374 499* 503 503 499* 281 294 354 356 356 354.

Google Scholar

[5] 458 458 499* 499* 499* 499* 341 341 449* 449* 449* 449.

DOI: 10.1017/9781108689687.010

Google Scholar

[6] 355 371 449* 449* 449* 449* 369 386 470 470 470 470.

DOI: 10.1515/9783110432916-005

Google Scholar

[7] 272 272 320* 320* 320* 320* 377 392 517 518 518 517.

Google Scholar

[8] 440 440 472* 482 472* 472* 253 310 342 342 342 342.

Google Scholar

[9] 359 359 445* 445* 459 445* 313 346 382* 406 404 382.

Google Scholar

[10] 419 437 502* 502* 502* 502* 310 310 431* 431* 431* 431* (5, 8) 1 576 576 607* 644 607* 607* 527 540 612 612 612 612.

DOI: 10.1038/nj7008-612c

Google Scholar

[2] 513 513 609* 629 625 609* 586 586 635 635 635 635.

Google Scholar

[3] 529 529 550* 554 566 550* 559 600 644 644 644 644.

Google Scholar

[4] 542 542 663* 695 667 663* 516 588 588* 588* 588* 588.

Google Scholar

[5] 500 569 616 646 616 616 522 522 620* 645 645 620.

Google Scholar

[6] 533 551 597* 624 624 597* 527 540 612 612 612 612.

Google Scholar

[7] 474 474 583 606 583 583 471 488 579* 601 588 579.

Google Scholar

[8] 621 621 686* 686* 686* 686* 432 443 472 484 484 472.

Google Scholar

[9] 539 539 656* 656* 656* 656* 532 562 638 654 654 638.

Google Scholar

[10] 524 553 600* 607 607 600* 511 511 599 599 599 599.

Google Scholar