Optimization of Optical Wavelength Conversion in SOI Waveguide

Article Preview

Abstract:

In this paper the wavelength conversion in a 1cm long silicon-on-insulator (SOI) waveguide has been investigated numerically. The wavelength conversion efficiency is optimized by analyzing free carriers absorption (FCA) loss generated by two-photon-absorption (TPA). The free carriers life time is focused while other factors influencing noise figure are also considered.

You might also be interested in these eBooks

Info:

[1] R. W. Boyd, Nonlinear Optics, 2nd ed., (Academic Press, Boston, 2003).

Google Scholar

[2] V. Raghunathan, R. Claps, D. Dimitropoulos and B. Jalali, Wavelength conversion in silicon using Raman induced four-wave mixing, Appl. Phys. Letts., vol. 85, 2004; 34–26, doi: 10. 1109/CLEO. 2003. 238755.

DOI: 10.1063/1.1768310

Google Scholar

[3] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).

Google Scholar

[4] L. F. Tiemeijer, Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier, Appl. Phys. Lett., vol. 59, 1991, pp.499-501, doi: 10. 1063/1. 105419.

DOI: 10.1063/1.105419

Google Scholar

[5] M. C. Tatham, G. Sherlock, and L. D. Westbrook, 20-nm optical wavelength conversion using nondegenerate four-wave mixing, IEEE Photon. Technol. Lett., vol. 5, 1993, pp.1303-1306.

DOI: 10.1109/68.250051

Google Scholar

[6] S. Murata, A. Tomita, J. Shimizu, and A Suzuki, THz optical-frequency conversion of 1-Gb/s signals using highly nondegenerate four-wave mixing in an InGaAsP semiconductor laser, IEEE Photon. Technol. Lett., vol. 3, 1991, pp.1021-1023.

DOI: 10.1109/68.97848

Google Scholar

[7] K. Inoue, H. Toba, Wavelength conversion experiment using fiber four-wave mixing, Electron. Lett., vol. 29, 1992, pp.1708-1710, doi: 10. 1109/68. 124880.

DOI: 10.1109/68.124880

Google Scholar

[8] T. Hasegawa, K. Inoue, and K. Oda, Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique, IEEE Photon. Technol. Lett., vol. 5, 1993, pp.947-948, doi: 10. 1109/68. 238264.

DOI: 10.1109/68.238264

Google Scholar

[9] Y.H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides, Opt. Exp., vol. 14, 2006, p.11721–11726.

DOI: 10.1364/oe.14.011721

Google Scholar

[10] B. G. Lee, A. Biberman, N. Ophir, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, 160-Gb/s broadband wavelength conversion on chip using dispersion-engineered silicon waveguides, presented at Conf. Lasers Electro-Opt. /τνI. Quantum Electron. Conf., Baltimore, Maryland, vol. OSA Technical Digest (CD) Optical Society of America, 2009), 2009, OCIS: (130. 7405).

DOI: 10.1364/cleo.2009.cthbb1

Google Scholar

[11] R. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. McNab, and Y. Vlasov, C-band wavelength conversion in silicon photonic wire waveguides, Opt. Exp., vol. 13, 2005, p.4341–4349, doi: 10. 1109/CLEO. 2005. 202097.

DOI: 10.1364/opex.13.004341

Google Scholar

[12] Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, Ultrabroadband parametric generation and wavelength conversion in silicon waveguides, Opt. Exp., vol. 14, no. 11, May 2006, p.4786–4799.

DOI: 10.1364/oe.14.004786

Google Scholar

[13] K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, All-optical efficient wavelength conversion using silicon photonic wire waveguide, IEEE Photon. Technol. Lett., vol. 18, no. 9, May 2006, p.1046–1048.

DOI: 10.1109/lpt.2006.873469

Google Scholar

[14] D.J. Moss, L. Fu, I. Littler, B.J. Eggleton, Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides, Electronics letters, vol. 41, 2005, pp.320-321, doi: 10. 1049/el: 20058051.

DOI: 10.1049/el:20058051

Google Scholar

[15] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, All-optical switch on a silicon chip, Opt. Lett., vol. 29, 2004, p.2867–2869, doi: 10. 1109/CLEO. 2004. 181253.

DOI: 10.1364/ol.29.002867

Google Scholar

[16] Y. Vlasov W.M. J. Green, and F. Xia, High-throughput silicon nanophotonicwavelength-insensitive switch for on-chip optical networks, Nature Photon., vol. 2, 2008, p.242–246.

DOI: 10.1038/nphoton.2008.31

Google Scholar

[17] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip, Nature, vol. 44, june 2006, p.960–963.

DOI: 10.1038/nature04932

Google Scholar

[18] R. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. McNab, and Y. Vlasov, Raman amplification in ultrasmall silicon-on- insulator wire waveguides, Opt. Exp., vol. 12, 2004, p.3713–3718.

DOI: 10.1364/opex.12.003713

Google Scholar

[19] Boyraz and B. Jalali, Demonstration of a silicon Raman laser, Opt. Exp., vol. 12, 2004, p.5269–5273.

DOI: 10.1364/opex.12.005269

Google Scholar

[20] Q. Lin, O. J. Painter, and G. P. Agrawal, Nonlinear optical phenomena in silicon waveguides: Modelling and applications, Opt. Exp., vol. 15, 2007, p.16604–16644.

DOI: 10.1364/oe.15.016604

Google Scholar

[21] X. Chen, N. C. Panoiu, and R. M. Osgood, Theory of Raman-mediated pulsed amplification in silicon-wire waveguides, IEEE J. Quantum Electron., vol. 42, no. 2, Feb. 2006, p.160–170.

DOI: 10.1109/jqe.2005.861827

Google Scholar

[22] K. K. Tsia, S. Fathpour, and B. Jalali, Energy harvesting in silicon wavelength converters, Opt. Express, vol. 14, 2006, pp.12327-12333.

DOI: 10.1364/oe.14.012327

Google Scholar

[23] Xinzhu Sang and Ozdal Boyraz, Gain and noise characteristics of high-bit-rate silicon parametric amplifiers, Opt. Express, vol. 16, 2008, pp.13122-13132.

DOI: 10.1364/oe.16.013122

Google Scholar

[24] Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, All optical switching and continuum generation in silicon waveguides, Opt. Express, vol. 12, 2004, pp.4094-4102.

DOI: 10.1364/opex.12.004094

Google Scholar

[25] C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, Tailored anomalous group-velocity dispersion in silicon channel waveguides, Opt. Express, vol. 14, 2006, pp.4357-4362.

DOI: 10.1364/oe.14.004357

Google Scholar

[26] R. A. Soref and B. R. Bennett, Electrooptical effects in silicon, IEEE J. Quantum Electron, vol. 23, 1987, pp.123-129, doi: 10. 1109/JQE. 1987. 1073206.

DOI: 10.1109/jqe.1987.1073206

Google Scholar

[27] H. A. Haus, Electromagnetic Noise and Optical Measurements, Springer-Verlag, 2000, pp.197-237.

Google Scholar

[28] D. Dimitropoulos, D. R. Solli, R. Claps, O. Boyraz and B. Jalali, Noise Figure of silicon Raman amplifiers, J. Lightwave Technol, vol. 26, 2008, pp.847-852, doi: 10. 1109/JLT. 2007. 915211.

DOI: 10.1109/jlt.2007.915211

Google Scholar

[29] P. Kylemark, P. O. hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, Noise characteristics of fiber optical parametric amplifiers, J. Lightwave Technology, vol. 22, 2004, pp.409-416, doi: 10. 1109/JLT. 2003. 822152.

DOI: 10.1109/jlt.2003.822152

Google Scholar