Study to Improve the Computation of the Oil Spill

Article Preview

Abstract:

This paper presents an improved oil spill model, coupled with a current model based on a 2D finite-difference grid. The aim of this study is to make the models more accurate and faster than the old ones. The current model gives the velocity distribution on the surface of water body and in the case of transient analysis, the velocity distribution is computed at each computational time step. This velocity distribution will be taken as the input for the oil transport simulation model. The oil spill model computes and predicts the oil distribution and the spill size. There are two improvements in this research: moving boundary to get the more correct results and nested grid to help the models run fast. The computational results in the study area are agreement to experimental results and real data in Can Gio coastal zone. So they can be applied in reality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4471-4479

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Charles W. Downer, William F. James, Aaron Byrd, and Gregory W. Eggers (2002).

Google Scholar

[2] Billy E. Johnson, Terry K. Gerald (2007). Development of Nutrient submodules for use in the gridded surface subsurface hydrological analysis (GSSHA) distributed watershed model.

DOI: 10.1111/j.1752-1688.2006.tb06017.x

Google Scholar

[3] Đặng Công Minh, Nguyễn Hữu Nhân (1993). Thủy triều biển Đông, chương trình nghiên cứu cấp nhà nước KT. 03, đề tài KT. 03. 03.

DOI: 10.52932/jfm.v1i61.69

Google Scholar

[4] Eric Wolanski, Nguyen Huu Nhan, Simon Spagnol (1998). Sediment Dynamics During Low Flow Conditions in the Mekong River Estuary, Vietnam.

Google Scholar

[5] Hansen M, DeFries R. (2004). Detecting long term forest change using continuous fields of tree cover maps from 8 km AVHRR data for the years 1982–1999. Ecosystems in press.

DOI: 10.1007/s10021-004-0243-3

Google Scholar

[6] Hans J. Friedrich (2004). Preliminary results from a numerical multilayer model for the circulation in the North Atlantic.

Google Scholar

[7] Ioannis Tsanis (2006). Environmental Hydraulics -Volume 56: Hydrodynamic and Pollutant Transport Models of Lakes an Coastal Waters. Elsevier Press.

DOI: 10.1016/s0167-5648(06)56001-0

Google Scholar

[8] Kiyoshi Horikawa (1988). Nearshore Dynamics and Coastal Processe. University of Tokyo Press.

Google Scholar

[9] Leo C. Van Rijn (1993). Principles Of Sediment Transport In Rivers Estuaries And Coastal Seas. Delft Hydraulics.

Google Scholar

[10] Le Thi Viet Hoa, Haruyama Shigeko, Nguyen Huu Nhan and Tran Thanh Cong (2008). Infrastructure effects on floods in the Mekong River Delta in Vietnam.

DOI: 10.1002/hyp.6945

Google Scholar

[11] Nguyen Thi Bay, Nguyen Ky Phung (2002), The 2-D model of flow and sediment transportation in a curved open channel, International colloquium in mechanics of solids, fluids, structures and interaction.

Google Scholar

[12] Phan Văn Hoặc, Nguyễn Hữu Nhân (1993). Nghiên cứu xâm nhập mặn trên sông Đồng Nai phục vụ nhà máy nước 100. 000m3/ngày, Tổng cụ Khí tượng thủy văn, phân viện Khí tượng thủy văn tại TPHCM.

DOI: 10.36335/vnjhm.2021(721).1-10

Google Scholar

[13] Phan Văn Hoặc (2004). Báo cáo đề tài: Nghiên cứu tương tác động lực học biển – sông ven biển Cần Giờ phục vụ xây dựng cơ sở hạ tầng cho du lịch TPHCM, Sở Khoa học và công nghệ TPHCM.

DOI: 10.15625/1859-3097/11/2/373

Google Scholar

[14] Trung tâm khí tương thủy văn phía Nam (2000). Vai trò của thủy triều trong vấn đề ngập lụt tại TPHCM, TPHCM.

DOI: 10.36335/vnjhm.2021(721).1-10

Google Scholar

[15] U. Lumborg, A. Windelin (2003). Hydrography and cohesive sediment modelling: application to the Romo Dyb tidal area., Journal of Marine Systems 38, 287-303.

DOI: 10.1016/s0924-7963(02)00247-6

Google Scholar

[16] Usama Saied, I.K. Tsanis (2008). A coastal area morphodynamics model., Journal of Environmental Modelling & Software 23, 35-49.

DOI: 10.1016/j.envsoft.2007.04.003

Google Scholar

[17] Z. Kowalid (Univ. Alaska), T. S. Murty (Inst. Ocean Science B. C) (1993), Numerical Modeling of Ocean Dynamics, Advanced Serieson Ocean Engineering - Volume 5.

Google Scholar

[18] DHI Software (2007). MIKE 21 Flow Model - Mud transport module. Scientific Background.

Google Scholar