Numerical Prediction of Natural Convection Heat Transfer through Porous Media by the Lattice Boltzmann Method

Article Preview

Abstract:

In this paper, we report an efficient numerical method to predict thermal fluid flow behavior in a square cavity filled with porous medium. The conventional Navier-Stokes equations are solved indirectly, i.e by the lattice Boltzmann formulation with second order accuracy in space and time. Numerical experiments were performed with different values of medium porosity and Rayleigh number to investigate the effect of these dimensionless parameters on the thermal fluid flow behavior in the cavity. In the current study, we found that the dynamics and the structure of primary vortex are significantly affected by the Rayleigh number and the medium porosity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4439-4444

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Santos and M. Costa, Modelling transport phenomena and chemical reactions in auomotive three-way catalytic converters, Chem. Eng. J., vol. 148, 2009, pp.173-183.

DOI: 10.1016/j.cej.2008.11.047

Google Scholar

[2] D. Suresh and S. W. Anthony, Numerical scheme to model condensation and evaporation of aerosols, Atm. Env., vol. 30, 1996, pp.911-928.

Google Scholar

[3] P. G. Darcy, Les Fontaines publiques de la ville de Dijon, Vicro Dalmont. 1856.

Google Scholar

[4] V. Bianco, O. Manca, S. Nardini and M. Roma, Numerical investigation of transient thermal and fluidynamics fields in an executive aircraft cabin, App. Thermal Eng., vol. 29, 2009, pp.3418-3425.

DOI: 10.1016/j.applthermaleng.2009.05.020

Google Scholar

[5] C. S. Nor Azwadi and S. Syahrullail, A three-dimension double-population thermal lattice BGK model for simulation of natural convection heat transfer in a cubic cavity, WSEAS Trans. Math., vol. 8, 2009, pp.561-571.

Google Scholar

[6] Z. Guo, E. Baochang and W. Nengchao, Lattice BGK model for incompressible Navier-Stokes equation, J. Comp. Phys., vol. 165, Nov. 2000, pp.288-306, doi: 10. 1006/jcph. 2000. 6616.

DOI: 10.1006/jcph.2000.6616

Google Scholar

[7] X. He, S. Chen and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comp. Phys., vol. 146, 1998, pp.282-300.

DOI: 10.1006/jcph.1998.6057

Google Scholar

[8] H. N. Dixit and V. Babu, Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Intl. J. Heat Mass Trans., vol. 49, 2006, pp.727-739.

DOI: 10.1016/j.ijheatmasstransfer.2005.07.046

Google Scholar

[9] Y. Peng, C. Shu and Y. T. Chew, Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, vol. 68, 2003, pp.026701-026708.

DOI: 10.1103/physreve.68.026701

Google Scholar

[10] C. S. Nor Azwadi and T. Tanahashi, Simplified finite difference thermal lattice Boltzmann method, Intl. J. Mod. Phys. B, vol. 22, 2008, pp.3865-3876.

DOI: 10.1142/s0217979208048619

Google Scholar

[11] S. Bekri and P. M. Adler, Dispersion in multiphase flow through porous media, Intl. J. Multiphase Flow, vol 28, Apr. 2002, pp.665-697, doi: 10. 1016/S0301-9322(01)00089-1.

DOI: 10.1016/s0301-9322(01)00089-1

Google Scholar

[12] H. C. Chan, W. C. Huang, J. M. Leu and C. J. Lai, Macroscopic modelling of turbulent flow over a porous medium, Intl. J. Heat Fluid Flow, vol. 28, Oct. 2007, pp.1157-1166, doi: 10. 1016/j. ijheatfluidflow. 2006. 10. 005.

DOI: 10.1016/j.ijheatfluidflow.2006.10.005

Google Scholar

[13] P. Cheng, Heat transfer in geothermal system, Adv. Heat Trans., vol. 4, 1978, pp.1-105.

Google Scholar

[14] A. Bejan and D. A. Nield, Convection in porous media, Springer, New York, (1992).

Google Scholar

[15] H. C. Chan, W. C. Huang, J. M. Leu and C. J Lai, Macroscopic modeling of turbulent flow over a porous medium, Intl. J. Heat Fluid Flow, vol. 28, 2007, pp.1157-1166.

DOI: 10.1016/j.ijheatfluidflow.2006.10.005

Google Scholar

[16] K. S. Chiem and Y. Zhao, Numerical study of steady/unsteady flow and heat transfer in porous media using a characteristics-based matrix-free implicit FV method on unstructured grids, Intl. J. Heat Fluid Flow, vol. 25, 2004, pp.1015-1033.

DOI: 10.1016/j.ijheatfluidflow.2004.01.005

Google Scholar

[17] M. A. Seddeek, Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium-with temperature dependent viscosity, Intl. Comm. Heat Mass Trans., vol. 32, 2005, pp.258-265.

DOI: 10.1016/j.icheatmasstransfer.2004.04.035

Google Scholar

[18] T. Seta, E. Takegoshi, K. Okui, Lattice Boltzmann simulation of natural convection in porous media, Math. Comp. Sim., vol. 72, 2006, pp.195-200.

DOI: 10.1016/j.matcom.2006.05.013

Google Scholar

[19] S. B. Edo and V. Maddalena, lattice Boltzmann studies of fluid flow in porous media with realistic rock geometries, Comp. Math. Appl., vol. 59, 2010, pp.2305-2314.

DOI: 10.1016/j.camwa.2009.08.063

Google Scholar

[20] J. Park, M. Matsubara and X. Li, Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell, J. Pow. Sour., vol. 173, 2007, pp.404-414.

DOI: 10.1016/j.jpowsour.2007.04.021

Google Scholar

[21] K. Yamamoto and N. Takada, LB simulation on soot combustion in porous media, Phys. A, vol. 362, 2006, pp.111-117.

Google Scholar

[22] C. S. Nor Azwadi and T. Tanahashi, Simplified thermal lattice Boltzmann in incomressible limit, Intl. J. Mod. Phys. B, vol. 20, July. 2006, p.2437–2449.

DOI: 10.1142/s0217979206034789

Google Scholar

[23] P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-components systems, Phys. Rev., vol. 94, Nov. 1954, p.511–525, DOI: 10. 1103/PhysRev. 94. 511.

DOI: 10.1103/physrev.94.511

Google Scholar

[24] P. Nithiarasu, K. N. Seetharamu and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, Intl J. Heat Mass Trans., vol. 40, Oct. 1997, pp.3955-3967, doi: 10. 1016/S0017-9310(97)00008-2.

DOI: 10.1016/s0017-9310(97)00008-2

Google Scholar

[25] D. V. Davis, Natural convection of air in a square cavity: A benchmark numerical solution, Intl. J. Numer. Meth. Fluid, vol. 3, 1983, pp.249-264.

DOI: 10.1002/fld.1650030305

Google Scholar