[1]
H. Santos and M. Costa, Modelling transport phenomena and chemical reactions in auomotive three-way catalytic converters, Chem. Eng. J., vol. 148, 2009, pp.173-183.
DOI: 10.1016/j.cej.2008.11.047
Google Scholar
[2]
D. Suresh and S. W. Anthony, Numerical scheme to model condensation and evaporation of aerosols, Atm. Env., vol. 30, 1996, pp.911-928.
Google Scholar
[3]
P. G. Darcy, Les Fontaines publiques de la ville de Dijon, Vicro Dalmont. 1856.
Google Scholar
[4]
V. Bianco, O. Manca, S. Nardini and M. Roma, Numerical investigation of transient thermal and fluidynamics fields in an executive aircraft cabin, App. Thermal Eng., vol. 29, 2009, pp.3418-3425.
DOI: 10.1016/j.applthermaleng.2009.05.020
Google Scholar
[5]
C. S. Nor Azwadi and S. Syahrullail, A three-dimension double-population thermal lattice BGK model for simulation of natural convection heat transfer in a cubic cavity, WSEAS Trans. Math., vol. 8, 2009, pp.561-571.
Google Scholar
[6]
Z. Guo, E. Baochang and W. Nengchao, Lattice BGK model for incompressible Navier-Stokes equation, J. Comp. Phys., vol. 165, Nov. 2000, pp.288-306, doi: 10. 1006/jcph. 2000. 6616.
DOI: 10.1006/jcph.2000.6616
Google Scholar
[7]
X. He, S. Chen and G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comp. Phys., vol. 146, 1998, pp.282-300.
DOI: 10.1006/jcph.1998.6057
Google Scholar
[8]
H. N. Dixit and V. Babu, Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Intl. J. Heat Mass Trans., vol. 49, 2006, pp.727-739.
DOI: 10.1016/j.ijheatmasstransfer.2005.07.046
Google Scholar
[9]
Y. Peng, C. Shu and Y. T. Chew, Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, vol. 68, 2003, pp.026701-026708.
DOI: 10.1103/physreve.68.026701
Google Scholar
[10]
C. S. Nor Azwadi and T. Tanahashi, Simplified finite difference thermal lattice Boltzmann method, Intl. J. Mod. Phys. B, vol. 22, 2008, pp.3865-3876.
DOI: 10.1142/s0217979208048619
Google Scholar
[11]
S. Bekri and P. M. Adler, Dispersion in multiphase flow through porous media, Intl. J. Multiphase Flow, vol 28, Apr. 2002, pp.665-697, doi: 10. 1016/S0301-9322(01)00089-1.
DOI: 10.1016/s0301-9322(01)00089-1
Google Scholar
[12]
H. C. Chan, W. C. Huang, J. M. Leu and C. J. Lai, Macroscopic modelling of turbulent flow over a porous medium, Intl. J. Heat Fluid Flow, vol. 28, Oct. 2007, pp.1157-1166, doi: 10. 1016/j. ijheatfluidflow. 2006. 10. 005.
DOI: 10.1016/j.ijheatfluidflow.2006.10.005
Google Scholar
[13]
P. Cheng, Heat transfer in geothermal system, Adv. Heat Trans., vol. 4, 1978, pp.1-105.
Google Scholar
[14]
A. Bejan and D. A. Nield, Convection in porous media, Springer, New York, (1992).
Google Scholar
[15]
H. C. Chan, W. C. Huang, J. M. Leu and C. J Lai, Macroscopic modeling of turbulent flow over a porous medium, Intl. J. Heat Fluid Flow, vol. 28, 2007, pp.1157-1166.
DOI: 10.1016/j.ijheatfluidflow.2006.10.005
Google Scholar
[16]
K. S. Chiem and Y. Zhao, Numerical study of steady/unsteady flow and heat transfer in porous media using a characteristics-based matrix-free implicit FV method on unstructured grids, Intl. J. Heat Fluid Flow, vol. 25, 2004, pp.1015-1033.
DOI: 10.1016/j.ijheatfluidflow.2004.01.005
Google Scholar
[17]
M. A. Seddeek, Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium-with temperature dependent viscosity, Intl. Comm. Heat Mass Trans., vol. 32, 2005, pp.258-265.
DOI: 10.1016/j.icheatmasstransfer.2004.04.035
Google Scholar
[18]
T. Seta, E. Takegoshi, K. Okui, Lattice Boltzmann simulation of natural convection in porous media, Math. Comp. Sim., vol. 72, 2006, pp.195-200.
DOI: 10.1016/j.matcom.2006.05.013
Google Scholar
[19]
S. B. Edo and V. Maddalena, lattice Boltzmann studies of fluid flow in porous media with realistic rock geometries, Comp. Math. Appl., vol. 59, 2010, pp.2305-2314.
DOI: 10.1016/j.camwa.2009.08.063
Google Scholar
[20]
J. Park, M. Matsubara and X. Li, Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell, J. Pow. Sour., vol. 173, 2007, pp.404-414.
DOI: 10.1016/j.jpowsour.2007.04.021
Google Scholar
[21]
K. Yamamoto and N. Takada, LB simulation on soot combustion in porous media, Phys. A, vol. 362, 2006, pp.111-117.
Google Scholar
[22]
C. S. Nor Azwadi and T. Tanahashi, Simplified thermal lattice Boltzmann in incomressible limit, Intl. J. Mod. Phys. B, vol. 20, July. 2006, p.2437–2449.
DOI: 10.1142/s0217979206034789
Google Scholar
[23]
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-components systems, Phys. Rev., vol. 94, Nov. 1954, p.511–525, DOI: 10. 1103/PhysRev. 94. 511.
DOI: 10.1103/physrev.94.511
Google Scholar
[24]
P. Nithiarasu, K. N. Seetharamu and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, Intl J. Heat Mass Trans., vol. 40, Oct. 1997, pp.3955-3967, doi: 10. 1016/S0017-9310(97)00008-2.
DOI: 10.1016/s0017-9310(97)00008-2
Google Scholar
[25]
D. V. Davis, Natural convection of air in a square cavity: A benchmark numerical solution, Intl. J. Numer. Meth. Fluid, vol. 3, 1983, pp.249-264.
DOI: 10.1002/fld.1650030305
Google Scholar