[1]
P. Cawley, R.D. Adams, The locations of defects in structures from measurements of natural frequencies, Journal of Strain Analysis 14 (1979) 49–57.
Google Scholar
[2]
A.D. Dimarogonas, C.A. Papadopoulos, Vibrations of cracked shafts in bending, Journal of Sound and Vibration 91 (1983) 583–593.
DOI: 10.1016/0022-460x(83)90834-9
Google Scholar
[3]
P. Gudmundson, Eigenfrequency changes of structures due to cracks, notches or other geometrical changes, Journal of the Mechanics and Physics of Solids 30 (1982) 339–353.
DOI: 10.1016/0022-5096(82)90004-7
Google Scholar
[4]
R.Y. Liang, F.K. Choy, J. Hu, Detection of cracks in beam structures using measurements of natural frequencies, Journal of the Franklin Institute 328 (1991) 505–518.
DOI: 10.1016/0016-0032(91)90023-v
Google Scholar
[5]
Y. Narkis, Identification of crack location in vibrating simply supported beams, Journal of Sound and Vibration 172 (1994) 549–558.
DOI: 10.1006/jsvi.1994.1195
Google Scholar
[6]
M.W. Suh, J.M. Yu, J.H. Lee, Crack identification using classical optimization technique, Key Engineering Materials 183–187 (2000) 61–66.
DOI: 10.4028/www.scientific.net/kem.183-187.61
Google Scholar
[7]
A. Morassi, Identification of a crack in a rod based on changes in a pair of natural frequencies, Journal of Sound and Vibration 242 (2001) 577–596.
DOI: 10.1006/jsvi.2000.3380
Google Scholar
[8]
S.P. Lele, S.K. Maiti, Modeling of transverse vibration of short beams for crack detection and measurement of crack extension, Journal of Sound and Vibration 257 (2002) 559–583.
DOI: 10.1006/jsvi.2002.5059
Google Scholar
[9]
M.B. Shim, M.W. Suh, A study on multiobjective optimization technique for inverse and crack identification problems, Inverse Problems in Engineering 10 (2002) 441–465.
DOI: 10.1080/1068276021000008504
Google Scholar
[10]
H.P. Lin, Direct and inverse methods on free vibration analysis of simply supported beams with a crack, Engineering Structures 26 (2004) 427–436.
DOI: 10.1016/j.engstruct.2003.10.014
Google Scholar
[11]
A. Morassi, Crack-induced changes in eigenfrequencies of beam structures, Journal of Engineering Mechanics 119 (1993) 1798–1803.
DOI: 10.1061/(asce)0733-9399(1993)119:9(1798)
Google Scholar
[12]
J. Fernandez-Saez, L. Rubio, C. Navarro, Approximate calculation of the fundamental frequency for bending vibrations of cracked beams, Journal of Sound and Vibration 225 (1999) 345–352.
DOI: 10.1006/jsvi.1999.2251
Google Scholar
[13]
A. Yavari, S. Sarkani, E.T. Moyer, On applications of generalized functions to beam bending problems, International Journal of Solid and Structures 37 (2000) 5675-5705.
DOI: 10.1016/s0020-7683(99)00271-1
Google Scholar
[14]
A. Yavari, S. Sarkani, J.N. Reddy, On uniform Euler-Bernoulli and Timoshenko beams with jump discontinuities: application of distribution theory, International Journal of Solid and Structures 38 (2001) 8389-8406.
DOI: 10.1016/s0020-7683(01)00095-6
Google Scholar
[15]
A. Yavari, S. Sarkani, On applications of generalized functions to the analysis of Euler-Bernoulli beam-columns with jump discontinuities, International Journal of Mechanical sciences 43 (6) (2001) 1543-1562.
DOI: 10.1016/s0020-7403(00)00041-2
Google Scholar
[16]
B. Stankovic, T.M. Atanackovic, Generalized solution to a linear discontinuous differential equation, Journal of Mathematical Analysis and Applications 324 (2) (2006) 1462-1469.
Google Scholar
[17]
L. Rubio, An Efficient Method for Crack Identification in Simply Supported Euler–Bernoulli Beams, Journal of Vibration and Acoustics 131 (2009) 51001-6.
DOI: 10.1115/1.3142876
Google Scholar
[18]
H. Tada, P. Paris, G. Irwin, The Stress Analysis of Cracks Handbook, second ed., Paris Productions, St. Louis, (1985).
Google Scholar