[1]
Gelso, E.R., E. Frisk, and J. Armengol Llobet. Robust fault detection using consistency techniques with application to an automotive engine[C]. 2008. Seoul, Korea, Republic of: Elsevier.
DOI: 10.3182/20080706-5-kr-1001.00929
Google Scholar
[2]
Vinsonneau, J.A.F., et al. Improved SI engine modelling techniques with application to fault detection[C]. 2002. Glasgow, United kingdom: Institute of Electrical and Electronics Engineers Inc.
Google Scholar
[3]
Shang, L. and G. Liu. Sensor and actuator fault detection and isolation for a high performance aircraft engine bleed air temperature control system[C]. 2009. Shanghai, China: Institute of Electrical and Electronics Engineers Inc.
DOI: 10.1109/cdc.2009.5400042
Google Scholar
[4]
Xue, W., Y. -Q. Guo, and R. Li, Algorithm and experimental validation for condition monitoring, fault detection for gas turbine engine[J]. Tuijin Jishu/Journal of Propulsion Technology. 32(2): pp.271-275.
Google Scholar
[5]
Wang, X., et al. Semi-physical neural network model in detecting engine transient faults using the local approach[C]. 2008. Seoul, Korea, Republic of: Elsevier.
Google Scholar
[6]
Lu, F., et al., Research on sensor fault diagnosis of aero-engine based on data fusion of SPSO-SVR[J]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2009. 24(8): pp.1856-1865.
Google Scholar
[7]
Alkan, Y., B.B. Biswal, and T.L. Alvarez. Visual cortical circuits revealed using fMRI and ICA[C]. New York, NY, United states: IEEE Computer Society.
DOI: 10.1109/nebc.2010.5458272
Google Scholar
[8]
Lv, J.C., et al., Stability and chaos of a class of learning algorithms for ICA neural networks[J]. Neural Processing Letters, 2008. 28(1): pp.35-47.
DOI: 10.1007/s11063-008-9080-2
Google Scholar
[9]
Wang, Z. and S. Li. Research and implement for vehicle license plate recognition based on improved BP network[C]. Chengdu, China: IEEE Computer Society.
DOI: 10.1109/cctae.2010.5543425
Google Scholar
[10]
Zhou, H., H. Chen, and J. Li. Design of multi-parameter fusion coulometer based on self-feedback BP network[C]. Wuhan, China: IEEE Computer Society.
DOI: 10.1109/icece.2010.196
Google Scholar