[1]
Blair J. C., Ryan R. S., Schutzenhofer and L. A., Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned, NASA/TP—2001–210992.
Google Scholar
[2]
Hammond, W. E., Design Methodologies for Space Transportation Systems, AIAA Inc., (2001).
Google Scholar
[3]
Wertz, J. R., Economic Model of Reusable vs. Expendable Launch Vehicles, IAF 51st International Astronautical Congress Rio de Janeiro, Brazil Oct. 2–6, (2000).
Google Scholar
[4]
Isakowitz, S. J., International Reference Guide to Space Launch Systems, 2nd Ed., AIAA Inc., (1995).
Google Scholar
[5]
Roshanian J., Jodei J., Ebrahimi m., An Automated Approach to Multidisciplinary System Design Optimization of Small Solid Propellant Launch Vehicles, , AIAA conference , china, (2006).
DOI: 10.1109/isscaa.2006.1627501
Google Scholar
[6]
Roshanian J., Jodei J., Ebrahimi m., Multidisciplinary Design Optimization of a Small Solid Propellant Launch Vehicle Using System Sensitivity Analysis, Structural and Multidisciplinary Optimization journal, Springer , (2009).
DOI: 10.1007/s00158-008-0260-5
Google Scholar
[7]
Kirkpatrick, S., Gelatt, C. D., and Vechi, M. P., Optimization by Simulated Annealing, Science, Vol. 220, No. 4598, 1983, p.671–680.
DOI: 10.1126/science.220.4598.671
Google Scholar
[8]
Vanderbilt, D., and Lougie, S. G., AMonte Carlo Simulated Annealing Approach to Optimization over Continous Variables, Journal of Computational Physics, Vol. 56, No. 2, 1984, p.259–271.
DOI: 10.1016/0021-9991(84)90095-0
Google Scholar
[9]
Corona, A., Marchesi, M., Martini, C., and Ridella, S., Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm, ACM Transactions on Mathematical Software, Vol. 13, No. 3, 1987, p.262–280.
DOI: 10.1145/29380.29864
Google Scholar
[10]
Siarry, P., Berthian, G., Durbin, F., and Hamesy, J., Enhanced Simulated Annealing for Globally Minimizing Functions of Many Continuous Variables, ACM Transactions on Mathematical Software, Vol. 23, No. 2, 1997, p.209–228.
DOI: 10.1145/264029.264043
Google Scholar
[11]
Romeijn, H. E., and Smith, R. L., Simulated Annealing for Constrained Global Optimization, Journal of Global Optimization, Vol. 5, No. 2, 1994, p.101–126.
DOI: 10.1007/bf01100688
Google Scholar
[12]
Belisle, C. J. P., Romeijin, H. E., and Smith, R. L., Hide-and-Seek a Simulated Annealing Algorithm for Global Optimization, Dept. of Industrial and Operations Engineering, Technical Rept. 90-25, Univ. of Michigan, Ann Arbor, MI, Sept. (1990).
Google Scholar
[13]
Lu, P., and Khan, M. A., Nonsmooth Trajectory Optimization: An Approach Using Continuous Simulated Annealing, Journal of Guidance, Control, and Dynamics, Vol. 17, No. 4, 1994, p.685–691.
DOI: 10.2514/3.21256
Google Scholar
[14]
Tekinalp, O., and Utalay, S., Simulated Annealing for Missile Trajectory Planning and Multidisciplinary Missile Design Optimization, AIAA Paper 2000-0684, Jan. (2000).
DOI: 10.2514/6.2000-684
Google Scholar
[15]
Freeman, D., Future Space Transportation System Study, Aerospace America, pp.36-56, June (1983).
Google Scholar
[16]
Martin, J., Orbit on Demand, Aerospace America, pp.36-61, Feb. (1985).
Google Scholar
[17]
Freeman, D., Stanley, D., Camarda, C., Lepsch, R., and Cook, S., Single-Stage-To-Orbit: A Step Closer, IAF Paper 94-V3. 534, Oct. (1994).
DOI: 10.1016/0094-5765(95)00087-g
Google Scholar
[18]
Stanley, D., et al., Rocket-Powered Single-Stage Vehicle Configuration Selection and Design, AIAA Paper 93-1053, Feb. (1993).
Google Scholar
[19]
Engelund, W., Stanley, D., McMillin, M., and Unal, R., Aerodynamic Configuration Design Using Response Surface Methodology Analysis, AIAA Paper 93-3967, Aug. (1993).
Google Scholar
[20]
Lepsch, R., Stanley, D., and Unal, R., Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle, Journal of Spacecraft & Rockets, Vol. 32, No. 3, May-June 1995, pp.417-425.
DOI: 10.2514/3.26631
Google Scholar
[21]
Braun, R., Powell, R., Lepsch, R., Stanley, D., and Kroo, I., Comparison of Two Multidisciplinary Optimization Strategies for Launch Vehicle Design, Journal of Spacecraft & Rockets, Vol. 32, No. 2, Mar. -Apr. 1995, pp.404-410.
DOI: 10.2514/3.26629
Google Scholar
[22]
Olds, J., System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO, AIAA Paper 94-4339, Sept. (1994).
Google Scholar
[23]
Braun, R. D., Moore, A. A., and Kroo, I. M., Use of Collaborative Optimization Architecture for Launch Vehicle Design, AIAA paper 1996-4018, Sept (1996).
DOI: 10.2514/6.1996-4018
Google Scholar
[24]
Ebrahimi, R., Rapid Solid Rocket Motor Design Code, MDO Laboratory, Dept. of Aerospace Engineering, K. N. Toosi University of Technology, MDO-LAB-TR121, Feb. (2005).
Google Scholar
[25]
Mirshams, M., Expendable Launch Vehicle Mass Estimate Relationship, MDO Laboratory, Dept. of Aerospace Engineering, K. N. Toosi University of Technology, MDO-LAB-TR134 Mar. (2005).
Google Scholar
[26]
Roshanian, J., Trajectory Simulation and Optimization, MDO Laboratory, Dept. of Aerospace Engineering, K. N. Toosi University of Technology, MDO-LAB-TR115, Jan. 2005. 10. 25.
Google Scholar
[27]
Malyshev V. V., etal., Aerospace Vehicle Control, Modern Theory and Applications, IAE Brazil and MAI Russia Cooperation, (1998).
Google Scholar
[28]
Rao S. S Engineering Optimization, Theory and Practice , John Wiley and Sons Inc, (1996).
Google Scholar