Synthesis and Characterization of Thermoplastic Biomaterial Based on Acylated Chitosan Oligosaccharide

Article Preview

Abstract:

A series of acylated chitosan oligosaccharides (LCSOs) were synthesized by reacting chitosan oligosaccharide (CSO) with lauroyl chloride in methane sulfonic acid. The chemical structures of LCSOs were characterized by Fourier transform infrared. Differential scanning calorimetry (DSC) showed that LCSOs had two phase transitions during heating. Thermoplastic chitosan oligosaccharide (LCSO-4) has distinct melting temperature (Tm) at 64 °C and 110°C. X-ray diffraction (XRD) analyses indicated that the crystal structure of CSO was changed through acylation and had created new crystal domains of lauroyl side chains. New strong diffraction peaks were observed around 2θ values of 20.0°, 21.5° and 26.3° for thermoplastic acylated chitosan oligosaccharide (LCSO-4). The melting and crystallization properties of thermoplastic acylated chitosan oligosaccharide were observed by polarized optical microscope (POM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1433-1436

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.N.V. Ravi Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Shashiwa, A. Domb: J. Chem. Rev. Vol. 104 (2004), pp.6017-6084

DOI: 10.1021/cr030441b

Google Scholar

[2] M.N.V. Ravi Kumar: React. Func. Polym. Vol. 46 (2000), pp.1-27

Google Scholar

[3] R.A.A. Muzzarelli: Cell Molecular Life Sci. Vol. 53 (1997), pp.131-140

Google Scholar

[4] K. Kurita, T. Kojima, Y. Nishiyama, M. Shimojoh: Macromolecules Vol. 33 (2000), pp.4711-4716

DOI: 10.1021/ma992113c

Google Scholar

[5] G.B. Jiang, D.P. Quan, K.R. Liao, H. H. Wang: Carbohydrate Polymers Vol. 66 (2006), pp.514-520

Google Scholar

[6] S.-I. Nishimura, O. Kohgo, K. Kurita: Chem. Lett. (1990) pp.243-246

Google Scholar

[7] Z. Zong, Y. Kimura, M. Takahashi, H. Yamane: Polymer Vol. 41 (2000), pp.899-906

Google Scholar

[8] H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, N. Yamamoto, S.-i. Aiba: Biomacromolecules Vol. 3 (2002), pp.1126-1128

DOI: 10.1021/bm0200480

Google Scholar

[9] G.P. Ma, D.Z. Yang, H.L. Tan, Q. Wu, J. Nie: J. Appl. Polym. Sci.. Vol. 109 (2008), pp.1093-1098

Google Scholar

[10] W. Sajomsang, S. Tantayanon, V. Tangpasuthadol, M. Thatte, W.H. Daly: Int. J. Biol. Macromol. Vol. 43 (2008), pp.79-87

DOI: 10.1016/j.ijbiomac.2008.03.010

Google Scholar

[11] J.C. Cabrera, P. Van Cutsem: Biochem. Eng. J. Vol. 25 (2005), pp.165-172

Google Scholar

[12] F.H. Li, S.X. Li, T. Jiang, Y. Sun: Advanced Materials Research Vol. 183-185 (2011), pp.155-160

Google Scholar

[13] V.M. Correlo, L.F. Boesel, M. Bhattacharya, J.F. Mano, N.M. Neves, R.L. Reis: Mater. Sci. Eng. A Vol. 403 (2005), pp.57-68

Google Scholar

[14] V.M. Correlo, E.D. Pinho, I. Pashkuleva, M. Bhattacharya, N.M. Neves, R.L. Reis: Macromol. Biosci. Vol. 7 (2007), pp.354-363

Google Scholar

[15] D.F. Coutinho, I.H. Pashkuleva, C.M. Alves, A.P. Marques, N.M. Neves, R.L. Reis: Biomacromolecules Vol. 9 (2008), pp.1139-1145

Google Scholar

[16] J.J. Guan, K.M. Eskridge, M.A. Hanna: Ind. Crops Prod. Vol. 22 (2005), pp.109-123

Google Scholar

[17] R.J. Samuels: J. Polym. Sci. B: Polym. Phys. Vol. 19 (1981), pp.1081-1105

Google Scholar