Effect of Surface Energy on the Size-Dependent Yield Criterion of Nanoporous Materials under Complex Stress States

Article Preview

Abstract:

Within a micromechanical framework, the effect of surface energy is taken into account to explore the size-dependent yield criterion of nanoporous materials under complex stress states. A theoretical picture of the yield behavior on an octahedral plane is illustrated as functions of the surface properties and void size. The prominent size dependence of the yield criterion of nanoporous materials highlights the importance of the surface effect in analyzing the strength of nanostructured materials. The results demonstrate a fundamental framework to extend continuum strength theories to the nanoscale with substantial surface effect, which may be useful for evaluating the mechanical integrity of nanostructured materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-19

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Wang, A.P. Cote, H. Furukawa, et al.: Nature Vol. 453 (2008), p.207.

Google Scholar

[2] M. Davis: Nature Vol. 417 (2002), p.813.

Google Scholar

[3] J.M. Thomas, R. Raja, G. Sankar, and R.G. Bell: Nature Vol. 398 (1999), p.227.

Google Scholar

[4] J. Weissmüller, R.N. Viswanath, D. Kramer, et al.: Science Vol. 300 (2003), p.312.

Google Scholar

[5] H.J. Jin, J. Weissmüller: Adv. Eng. Mater. Vol. 12 (2010), p.714.

Google Scholar

[6] R. Neugebauer, T. Hipke: Adv. Eng. Mater. Vol. 8 (2006), p.858.

Google Scholar

[7] C.Q. Sun: Prog. Mat. Sci. Vol. 54 (2009), p.179.

Google Scholar

[8] H.L. Duan, J. Wang, B.L. Karihaloo, and Z.P. Huang: Acta Mater. Vol. 54 (2006), p.2983.

Google Scholar

[9] X.Q. Feng, R. Xia, X. Li, B. Li: Appl. Phys. Lett. Vol. 94 (2009), p.011916.

Google Scholar

[10] W.X. Zhang, T.J. Wang and X. Chen: Int. J. Plasticity Vol. 26 (2010), p.957.

Google Scholar

[11] M.H. Yu: Appl. Mech. Rev. Vol. 55 (2002), p.169.

Google Scholar

[12] A.L. Gurson: J. Eng. Mat. Tech. Vol. 99 (1977), p.2.

Google Scholar

[13] V. Tvergaard, A. Needleman: Acta Metall. Vol. 32 (1984), p.157.

Google Scholar

[14] D.L.S. McElwain, A.P. Roberts, A.H. Wilkins: Acta Mater. Vol. 54 (2006), p. (1995).

Google Scholar

[15] M.E. Gurtin, A.I. Murdoch: Arch. Rat. Mech. Anal. Vol. 57 (1975), p.291.

Google Scholar

[16] D.J. Bottomley, T. Ogino: Phys. Rev. B Vol. 63 (2001), p.165412.

Google Scholar

[17] H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo: J. Mech. Phys. Solids Vol. 53 (2005), p.1574.

Google Scholar

[18] P. Sharma, S. Ganti, N. Bhate: Appl. Phys. Lett. Vol. 82 (2003), p.535.

Google Scholar